




multiple MAVs fully autonomously. (2) Estimation of the

camera extrinsics and the 3D location of the person. (3)

Fitting a 3D body model robustly to 2D joint detections

from multiple flying cameras. (4) We show, for the first

time, that it is possible to capture human movement fully

autonomously from aerial vehicles. (5) We compare our

3D poses with reference data computed from a multi-IMU

suit and the SIP method for pose estimation [26]. While

the accuracy is not yet on par with commercial marker-

based systems, this is a practical step towards a solution

that addresses each piece of technology in an integrated

whole. Our code and dataset are available at https:

//github.com/robot-perception-group/

Aircap_Pose_Estimator.

2. Related Work

There is a long history of work on markerless, multi-

camera, motion capture. The classical methods all rely on

static, calibrated, cameras in laboratory conditions and we

do not review these here. Instead, we focus on methods that

work outdoors with moving cameras.

Hasler et al. [9] recover human pose from hand-held, un-

synchronized, cameras, while more recent work assumes

synchronization [28]. Both models assume that there ex-

ists a personalized 3D mesh of the person. These methods

also assume that the cameras view a scene with a highly

textured background that can be used to calibrate the cam-

eras and track their motions using standard structure-from-

motion methods. Like [9], Elhayek et al. [7] can deal with

unsynchronized cameras, which they time-sync using au-

dio. They also require a 3D template of the body. They re-

quire some user interaction to get the initial camera calibra-

tion using features and bundle adjustment. They then jointly

estimate the body pose and camera calibration parameters.

The first use of the body pose for camera calibration was

in [14] where they assume a repetitive motion. By using

the same pose of the body from different views, they effec-

tively treat the body as a 3D calibration object. In contrast

to our scenario, in the above work with hand-held cameras,

the human takes up a significant portion of the image. With

outdoor aerial applications, the person is frequently far from

the camera and the ground may not have sufficient texture

for structure from motion.

Flying motion capture systems have primarily been re-

stricted to laboratory environments. Here the vehicles do

not need to deal with wind, making the control problem eas-

ier. Additionally, indoor environments offer many cues for

camera calibration and tracking. For example, the FlyCap

system [31] uses RGB-D sensors mounted on multiple in-

door micro aerial vehicles (MAVs) [31]. They develop a

system for autonomous vehicle control and 3D human pose

estimation. However, the method proposed in [31] involves

a template scanning as the first step where the subject needs

to stay still for some time. FlyCap also requires a textured

background for stable flight control. They only test indoors

so do not have to deal with wind and fly the drones close to

the person so that they are large in the camera field of view.

In contrast, the Flycon system works outdoors but as-

sumes active LED markers are worn on the body. This ef-

fectively takes the concept of traditional marker-based mo-

cap, using IR sensors and retroreflective markers, and ex-

tends it to flying cameras. Their system works outdoors and

the approach leverages the robust and mature algorithms

available for IR based MoCap systems. Like earlier work

[7] the approach jointly estimates body pose and camera

extrinsics. The highly visible markers significantly sim-

plify the problem but require a subject preparation step to

place the IR markers on the subject’s body. Because of this

simplification, Flycon runs in realtime whereas our method

takes a two-stage approach. We perform rough realtime 3D

tracking of the human during capture and then off-line we

estimate the 3D pose. This works well for motion capture

but would not be appropriate for a realtime human-robot in-

teraction scenario.

Here we show that explicit LED markers are not nec-

essary, given recent advances in 2D human joint location

estimation using deep networks [5, 8]. However, due to the

small apparent size of the subject and aerial views, these

methods result in a noisy estimate.

Recent work also shows promise in 3D human pose esti-

mation from monocular data [4, 12, 17, 19], but these meth-

ods do not use multiple camera views. These 3D estimates

from separate cameras cannot be fused easily due to am-

biguity in scale and perspectives. In [10] they extend SM-

PLify to multiple camera views but assume the cameras are

stationary. OpenPose [5] also can take multiple calibrated

camera images and return 3D joint locations but this ap-

proach cannot deal with the inaccurate calibration of flying

cameras. Although the 3D estimate from these methods can

not be used directly, in our proposed approach we leverage

them as noisy sensors for 2D joints positions and show how

they can be efficiently fused to obtain a consistent 3D pose

and shape estimate.

For outdoor capture, there are other technologies that

do not rely on computer vision. Commercial systems, like

Xsens are based on subject-mounted inertial measurement

units (IMUs) and recent work has shown that body pose can

be estimated from a small number of such units [11, 26].

These methods have several limitations however. Subject

preparation is required, the subject has to be cooperative,

and the sensors can affect movement. Additionally, the

IMUs drift and can be significantly affected by metal in the

environment. Several methods combine cameras [25, 24] or

depth sensors [32] and IMUs to address some of these prob-

lems. Here we use an IMU method to create reference data

(pseudo ground truth) for the evaluation of our purely RGB



solution.

3. Proposed Approach

We first describe our motion capture hardware and the

online phase. Then we discuss our system pipeline in de-

tail by introducing mathematical symbols and notations fol-

lowed by the algorithm. The pipeline consists of four steps.

3.1. Step 1 : MoCap system setup and online data
acquisition phase

Step 1 in Fig. 2 shows our MAV-based outdoor motion

capture system tracking and following a person. It con-

sists of a team of self-designed 8-rotor MAVs (see in Step

3 in Fig. 2 inset). Each MAV is equipped with a 2MP HD

camera, a computer with an Intel i7 processor, an NVIDIA

Jetson TX1 embedded GPU and an OpenPilot Revolution1

flight controller board. We use the flight controller’s posi-

tion and yaw controller as well as its GPS and IMU-based

self-pose (position and orientation) estimation functionali-

ties.

To detect, track and follow the person, we use a

perception-driven formation approach [21, 23]. Each copter

runs a single shot detector (SSD) multibox [15] on the im-

ages acquired by its camera using its on-board GPU to de-

tect the person’s outer bounding box on the image frames.

A detection rate of ∼4 Hz is achieved during the online

acquisition. The MAVs then share the person’s 2D image

bounding box positions and their 3D self-pose estimates

wirelessly between each other. Subsequently, using a co-

operative detection and tracking (CDT) filter [21] that runs

on-board each MAV’s CPU, they estimate the 3D position

of the person’s center of mass in a consistent world frame

(GPS-frame). Using this method, the MAVs also improve

their 3D self-pose localization. One key feature of the CDT

filter is that it allows the detector to focus on the most in-

formative region of interest (ROI) on future image frames,

thereby making it computationally efficient. Note that even

though the detections are obtained at ∼4 Hz, the CDT filter

runs at ∼30 Hz, alternating between the standard prediction

and update steps, except that the updates happen at a lower

frequency.

In the online phase, the goal is to keep the person in the

field of view and centered in each MAV’s camera. Addi-

tional constraints include maintaining threshold distances

to the other MAVs and static obstacles. To this end, each

MAV runs a model predictive control (MPC)-based forma-

tion controller [23] on its on-board CPU. The MPC’s objec-

tive is to maintain a threshold distance to the subject while

adhering to the aforementioned formation constrains. Ori-

enting the MAV towards the subject is achieved using an

additional yaw controller (separate from the MPC). Further

1OpenPilot: http://www.librepilot.org/site/index.html

details regarding the CDT tracker and formation controller

can be obtained from [21] and [23], respectively.

During the online phase, all MAVs save images on-board

at ∼40 Hz and their self-pose estimates at ∼100 Hz. As the

camera is rigidly mounted on each MAV, the extrinsics of

the camera are obtained using a fixed and known transfor-

mation from the MAV’s self-pose (position and orientation)

in the world frame.

3.2. Step 2 : 2D region of interest and MAV self pose
refinement

In this step, we run the CDT algorithm of Step 1 offline

to improve the subject’s tracked position estimate and each

MAV’s self pose estimates. The SSD Multibox detector

runs on every frame in Step 2. The CDT filter leverages

these every-frame observations to obtain the ROIs for every

image and improve the MAV self-pose estimates.

3.3. Step 3 : Offline pose estimation

The rest of this section discusses Step 3 in which the

person’s pose and shape, as a function of time, is estimated

using the data acquired in the online phase (Step 1) and re-

fined in Step 2. Note that Step 4 concerns comparison with

ground truth and is, therefore, discussed in the next section

with experiments and results.

3.3.1 Preliminaries

Consider a system with C moving cameras. The intrinsic

parameters of each camera are fixed. Since the cameras are

moving in the world frame, their extrinsic parameters (rota-

tion vector, translation vector) are changing over time. The

rotation vector (3× 1) and position vector (3× 1) of cam-

era c at any time instant t is represented as rc,t and pc,t

respectively.

SMPL [16] is a state of the art human body model. It

is learned by using thousands of high-quality body scans of

people with a wide variety of body types. It is parameter-

ized by two latent parameters: pose and shape. The pose

parameter is represented by θ. It is a 72 × 1 vector, i.e.

3 axis angle values for each of the 23 joints and 3 values

for root (pelvis) joint location (23*3+3=72). The SMPL

shape parameter β is a (10× 1) vector whose elements are

weights of the 10 most significant eigen shapes (refer [16]

for details).

2D joint detections on the collected images can be highly

noisy. We use multiple 2D joint detectors for robustness.

Say we use D detectors and each detector gives N joints

positions on camera plane. The position of nth joint given

by dth detector on cth camera plane at time instant t is a

2 × 1 vector represented as j
n,d
c,t . The detector also gives a

confidence value in terms of probability for each detected

joint. It is represented as w
n,d
c,t .



The SMPL pose vector θ is the collection of all the joint

angles. However, human poses do not span the entire an-

gle space. To restrict θ to the natural pose space, we use

another parameterization, with a known distribution. This

method, also called Vposer, is first introduced in [20]. The

new parameterization of human pose, has 32 elements, and

is the latent space of a VAE (Variational Auto Encoder) [13]

with a Normal distribution. Vposer is trained on more than

1 million poses of multiple subjects and is capable of pro-

ducing novel, realistic human poses. For more details on

the data and actual training procedure refer to [20]. Vposer

provides a mapping from the latent variable z to full pose

variable θ given as

θ = V(z). (1)

We can exploit the known distribution of the latent vari-

able as a prior in our optimization objective, by keeping its

values close to the mean of the Normal distribution. This

translates to a simple L2 norm on the new parameterization.

3.3.2 Algorithm

We use the detected 2D joints and intrinsic parameters to

optimize for body model parameters along with camera ex-

trinsics. Camera extrinsics are initialized with the refined

estimates obtained in Sec. 3.2. This is done independently

for each time step.

Per-frame fitting We minimize a cost function at each

time step t, which can be decomposed into the following

components:

E(r1···C,t,p1···C,t, zt,βt) =

E2D + λr,pEr,p + λzEz + λβEβ,
(2)

where λr,p, λz and λβ are weights of the corresponding

components.

The first term ensures that the 2D projection of the

model’s 3D joints remains close to the observed 2D joints.

It is given as

E2D(zt, βt, rc,t,pc,t) =

∑

c,n,d

w
n,d
c,t ρσ1

(

∥

∥Π
(

rc,t,pc,t,J
n(V(zt),βt)

)

− j
n,d
c,t

∥

∥

)

,
(3)

where J n is the joint regressor function that gives the nth

joint position given the SMPL pose and shape parameters.

Π is the projection function that projects the 3D point on the

image plane, given camera parameters. ρσ1
is the Geman-

McClure robust penalty function with a fixed parameter σ1,

written as

ρσ1
(e) =

e2

e2 + σ2

1

. (4)

As explained in Sec. 3.1, camera extrinsic parameters are

obtained directly from the MAV’s self-pose data saved dur-

ing the flights made by the MAV formation. The self-pose

estimates of the MAVs are prone to various sources of er-

ror, e.g., GPS and IMU drifts and changing prevelant wind

speeds causing fluctuations in the barometer measurements.

This causes the camera extrinsic parameters to be noisy.

Hence, we also optimize for the camera extrinsic parame-

ters, with the objective of keeping them close to the values

estimated online by the MAVs, by including another cost

term,

Er,p = ρσ2
(rc,t − r̃c,t) + ρσ2

(pc,t − p̃c,t), (5)

where r̃c,t and p̃c,t are the rotation and position vectors of

camera c at any time t estimated online by the MAVs dur-

ing the data acquisition phase. ρσ2
is the same function

described in (4).

Ez is a regularization term on the latent pose parameter

z given as

Ez = ‖z‖. (6)

β is a vector of the 10 most significant eigen shapes of

SMPL, which we regularize with Eβ as

Eβ = ‖β‖. (7)

4. Experiments and Results

4.1. Data Acquisition

Using our MAV-based motion capture system described

in Sec. 3.1, we performed a data collection formation flight

using 3 MAVs. Our on-board formation controller, MAV

self-pose and person’s (3D position, not joint poses) state

estimator, etc., are implemented as Robot Operating Sys-

tem (ROS) nodes which makes it easier for MAVs to com-

municate with each other using standard message types.

The MAV formation constraints of altitude and horizontal

distance from the subject is set to 8m. The value is rel-

atively high due to safety considerations. During the for-

mation flight, the subject is requested to walk on a grassy

field at slow to moderate speeds and later perform ran-

dom motion sequences, such as jumping jacks, bending for-

ward/backward, swaying arms, etc.

4.2. Dataset

All images and camera extrinsic and intrinsic parameters

are saved on-board each MAV as ROS messages in a rosbag

file. Each message has Unix timestamp denoting the time

of its acquisition. We receive images from each camera at

approx. 30-40 frames per second (fps). Even though both



MAV cameras have the same frame rates, they are not syn-

chronized. Meaning, they do not necessarily capture im-

age frames simultaneously. For any image from the first

MAV’s camera, there might not exist an image from the

other MAV’s camera at the same instant. Also, as camera

parameters are available at a much higher frequency than

images, for each image in the system, camera intrinsic and

extrinsic parameters are available. Later, we extract data

from the saved bagfile, refine them and use it to estimate the

shape and pose of the subject using the method described in

Sec. 3.3.

4.3. Reference Data

We obtain reference (ref) data to evaluate our reconstruc-

tions from two different systems, i) a commercially avail-

able IMU MoCap system (Xsens) [3] and ii) a pair of dif-

ferential GPS modules. IMU system is used to obtain ref-

erence data for body pose relative to the root joint. For ref-

erence SMPL parameters, we use a state of the art IMU

MoCap method Sparse Inertial Poser (SIP) [27]. It uses raw

data from Xsens and gives SMPL parameters. However,

the global root joint position and orientation from SIP are

not reliable for ref comparison. To solve this issue, we use

a pair of differential GPS modules, each one attached to a

shoulder of the subject to get the position of root joint in the

global coordinate system. The reference global root orien-

tation still remains unestimated as it is not directly measur-

able with these two systems.

4.4. Implementation

Using the approach in [21] the MAVs autonomously

maintain a formation around the person while following

him/her and keeping him/her centered in their camera’s field

of view. During the formation flights, the MAVs detect

the person in their camera image using single shot detector

(SSD) multibox [15] and estimate his/her 3D world position

(not the joint pose) and uncertainty associated, in order to

maintain the formation. This also results in a cropped region

of interest (ROI) which has the highest likelihood of having

the person inside it. For every image, the MAVs also save

this corresponding ROI. The ROI data and MAV self pose

estimates are then refined offline and saved. We crop the

full images based on the provided ROIs and apply multiple

joint detectors, each producing a set of 2D joints estimates.

If the ROI goes outside the camera frame, we take the full

image for 2D joint detection.

We then use two state of the art 2D joint detectors: al-

phapose [8, 30] and OpenPose [5, 22, 29]. All the dataset

images are processed using these joint estimators and their

output is saved with the same timestamp as that of the im-

age. We use these 2D joints along with the camera extrinsic

and intrinsic parameters in our cost function as given in (2).

Since the cameras are not synchronized, we use the closest

actual shape shape estimation

Joint ejp eja ejp eja
L Hip 0 6.73 0 6.81

L Knee 0.0767 8.60 0.0876 8.69
L Ankle 0.1629 5.49 0.1904 5.50
L Foot 0.1843 9.71 0.2157 9.44
R Hip 0 6.62 0 6.60

R Knee 0.0680 9.59 0.0760 9.67
R Ankle 0.1251 7.79 0.1448 7.73
R Foot 0.1461 8.10 0.1693 7.86
Spine1 0 5.32 0 5.18
Spine2 0.0264 3.01 0.0290 2.96
Spine3 0.0397 1.61 0.0439 1.59
Neck 0.0931 6.25 0.1068 6.11
Head 0.1237 5.13 0.1428 4.90

L Collar 0.0683 4.09 0.0771 3.82
L Shoulder 0.0779 13.15 0.0861 13.28

L Elbow 0.0863 16.41 0.1023 16.15
L Wrist 0.1689 10.46 0.1984 10.21
L Hand 0.2045 2.34 0.2411 2.30
R Collar 0.0694 5.55 0.0777 5.23

R Shoulder 0.0919 10.96 0.0993 10.87
R Elbow 0.0987 22.15 0.1075 21.65
R Wrist 0.1781 11.41 0.2013 11.29
R Hand 0.2134 3.19 0.2417 3.19
Pelvis aligned with the ref

Table 1: Mean error in joint positions (meters) and joint angles (degrees)

(using actual body shape vs shape estimation). Pelvis joint is aligned with

the ref. The position error for L Hip, R Hip and Spine1 becomes 0 because

these joints are rigidly connected to the Pelvis.

frames in time from all the cameras for per-frame fitting.

We use a PyTorch [1] implementation of SMPL to regress

from SMPL parameters to 3D joint positions in (3). The to-

tal cost is sequentially minimized for each frame to get the

optimized value of SMPL pose and camera extrinsic param-

eters. The value of σ1 (3) and σ2 (5) are 40 and 10 respec-

tively. We found after trial-and-error that these values work

well. After optimizing for a frame, the optimized parame-

ter values are used as initial values for the next frame except

for the camera extrinsics. These are initialized with the ones

obtained from Sec 3.2. For optimization, we use the Adam

optimizer from PyTorch. The number of iterations for the

first frame is 1000 with 0.25 learning rate and 100 with 0.1

learning rate for subsequent frames.

4.5. Results and Discussion

First, we compare our reconstructed pose with the ref-

erence pose. In this, we zero out the global position and

rotation of the reconstructed SMPL and ref SMPL. In Ta-

ble 1, we show the mean error in joint positions (ejp) and

mean error in joint angles (eja). ejp is calculated by taking

the Euclidean distance between each estimated joint and the
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