Markerless Outdoor Human Motion Capture Using
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Figure 1: 3D markerless motion capture from fully autonomous micro aerial vehicles (MAVs) with on-board cameras. Multi-exposure image shows the
trajectory of the MAVs and the 3D body pose and shape projected onto an image frame from an external camera. This camera was not part of the motion
capture setup. Hence this camera, the MAV’s cameras, body pose reprojection and alignment were manually time synchronized.

Abstract

Capturing human motion in natural scenarios means
moving motion capture out of the lab and into the wild. Typ-
ical approaches rely on fixed, calibrated, cameras and re-
Jflective markers on the body, significantly limiting the mo-
tions that can be captured. To make motion capture truly
unconstrained, we describe the first fully autonomous out-
door capture system based on flying vehicles. We use mul-
tiple micro-aerial-vehicles (MAVs), each equipped with a
monocular RGB camera, an IMU, and a GPS receiver mod-
ule. These detect the person, optimize their position, and lo-
calize themselves approximately. We then develop a mark-
erless motion capture method that is suitable for this chal-
lenging scenario with a distant subject, viewed from above,
with approximately calibrated and moving cameras. We
combine multiple state-of-the-art 2D joint detectors with
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a 3D human body model and a powerful prior on human
pose. We jointly optimize for 3D body pose and camera
pose to robustly fit the 2D measurements. To our knowl-
edge, this is the first successful demonstration of outdoor,
full-body, markerless motion capture from autonomous fly-
ing vehicles.

1. Introduction

Motion capture is widely used in applications like ani-
mation, prosthetics, medical research, robotics, sports, etc.
Most of the commercial and widely used motion capture
systems are marker based [2]. In these, infrared (IR) reflec-
tive markers are placed on the subject’s body and tracked
using multiple, static, calibrated, IR cameras. This lim-
its the range and naturalness of human motions that can
be captured. To increase naturalness, several marker-based
systems can be used outside but still require body-mounted
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Figure 2: AirCap System Overview. Step 1 is the online phase while Step 2—4 are parts of the offline phase, as described in the text.

markers and fixed, calibrated, cameras. Additionally, mark-
erless systems have been developed for outdoor scenarios
but require static cameras [6, 9]. Still, other capture tech-
nologies like IMU’s can be used [3, 11, 26] but these re-
quire wearing bulky sensors, their systems drift over time,
and can be influenced by metal objects. Today there is no
practical system for outdoor markerless human MoCap that
can work over arbitrary distances.

Our goal is to be able to capture a freely moving human
outdoors, running, jumping, etc., with no markers and full
freedom of movement. To do so, we propose to capture hu-
man movement using RGB cameras mounted on multiple
micro aerial vehicles (MAVs); that is, a flying motion cap-
ture system. This idea is not new but no previous methods
achieve our goal. They are either restricted to indoors [31]
or require specialized markers to be worn on the body [1§].

This problem has remained unsolved because it com-
bines several technologies, each of which on their own is
a major technical challenge. First, we need multiple aerial
vehicles that can coordinate, self locate, identify a subject,
hold them in view, avoid obstacles, etc. Second, motion
capture requires calibrated cameras, where the extrinsic pa-
rameters are known with high accuracy. Achieving this out-
doors with moving vehicles in real settings is a significant
technical challenge. Third, while deep learning methods
have made 2D joint detection relatively reliable, accurate
3D human pose from images remains an active research
problem.

To address these issues, we present an outdoor marker-
less human motion capture system using a team of MAVs,
called AirCap. Each MAV consists of only an RGB camera
to detect and track the subject. Each MAV also has an on-
board IMU, GPS and barometer used only for its self-pose
estimation in the global (GPS) coordinate frame. Note that
these sensors alone are not sufficient to achieve the accuracy
of camera calibration necessary for human MoCap. Conse-
quently, like [7], we formulate the calibration problem to-
gether with the human pose estimation problem. The over-
all functioning of our motion capture system is split into
two phases, namely, 1) an online data acquisition phase us-
ing autonomous MAVs, and ii) an offline pose and shape

estimation phase. This is summarized in Fig. 2.

During the online data acquisition phase, the MAVs co-
operatively detect and track the 3D position of a subject us-
ing the approach presented in [21] and follow them in for-
mation using the perception-driven method from [23]. This
formation allows the MAVs to i) keep the subject in their
camera’s field of view and centered on the image plane, ii)
maintain a threshold distance from the subject and iii) not
collide with each other or any other static obstacle in the en-
vironment. The data acquired in this phase consists of im-
ages captured by all MAVs and their camera extrinsic and
intrinsic parameters. The data also contains the person’s
approximate 3D location in the world coordinates (not the
detailed pose). Note that the camera extrinsics from this
phase are approximate and, as we will see, not sufficiently
accurate for human MoCap.

In the second phase, which is offline, human pose and
shape are estimated using only the acquired RGB images
and the MAV’s self-localization poses (the camera extrin-
sics). Our approach relies on 2D joint detections in each
camera; current methods like AlphaPose [8] and OpenPose
[5] are quite accurate even with aerial imagery. To fuse
these 2D detections into a 3D pose estimate, we formu-
late an objective function in which we simultaneously solve
for body shape, 3D pose, and 3D camera positions. Pose
is represented by relative joint rotations of body parts in a
kinematic tree. Specifically, we use the 3D SMPL body
model [16] to fuse the noisy estimates. SMPL captures the
shape of the human body and this constrains the possible
solutions. We project the joints of SMPL onto each of the
images (using the estimated camera parameters) and com-
pute the error (robustly) between the predictions and the ob-
served 2D detections. Since the 2D pose detections may
be noisy, we regularize the 3D fitting with a learned pose
prior called Vposer [20]. Vposer is learned from SMPL fits
to hours of motion capture data using a variational auto-
encoder (VAE). We solve for camera parameters jointly
and constrain them to be similar to those estimated by the
MAVs.

In summary, AirCap addresses the following key
challenges: (1) Detection and tracking of a person by



multiple MAVs fully autonomously. (2) Estimation of the
camera extrinsics and the 3D location of the person. (3)
Fitting a 3D body model robustly to 2D joint detections
from multiple flying cameras. (4) We show, for the first
time, that it is possible to capture human movement fully
autonomously from aerial vehicles. (5) We compare our
3D poses with reference data computed from a multi-IMU
suit and the SIP method for pose estimation [26]. While
the accuracy is not yet on par with commercial marker-
based systems, this is a practical step towards a solution
that addresses each piece of technology in an integrated
whole. Our code and dataset are available at https:
//github.com/robot-perception—group/
Aircap_Pose_Estimator.

2. Related Work

There is a long history of work on markerless, multi-
camera, motion capture. The classical methods all rely on
static, calibrated, cameras in laboratory conditions and we
do not review these here. Instead, we focus on methods that
work outdoors with moving cameras.

Hasler et al. [9] recover human pose from hand-held, un-
synchronized, cameras, while more recent work assumes
synchronization [28]. Both models assume that there ex-
ists a personalized 3D mesh of the person. These methods
also assume that the cameras view a scene with a highly
textured background that can be used to calibrate the cam-
eras and track their motions using standard structure-from-
motion methods. Like [9], Elhayek et al. [7] can deal with
unsynchronized cameras, which they time-sync using au-
dio. They also require a 3D template of the body. They re-
quire some user interaction to get the initial camera calibra-
tion using features and bundle adjustment. They then jointly
estimate the body pose and camera calibration parameters.
The first use of the body pose for camera calibration was
in [14] where they assume a repetitive motion. By using
the same pose of the body from different views, they effec-
tively treat the body as a 3D calibration object. In contrast
to our scenario, in the above work with hand-held cameras,
the human takes up a significant portion of the image. With
outdoor aerial applications, the person is frequently far from
the camera and the ground may not have sufficient texture
for structure from motion.

Flying motion capture systems have primarily been re-
stricted to laboratory environments. Here the vehicles do
not need to deal with wind, making the control problem eas-
ier. Additionally, indoor environments offer many cues for
camera calibration and tracking. For example, the FlyCap
system [3 1] uses RGB-D sensors mounted on multiple in-
door micro aerial vehicles (MAVs) [31]. They develop a
system for autonomous vehicle control and 3D human pose
estimation. However, the method proposed in [3 1] involves
a template scanning as the first step where the subject needs

to stay still for some time. FlyCap also requires a textured
background for stable flight control. They only test indoors
so do not have to deal with wind and fly the drones close to
the person so that they are large in the camera field of view.

In contrast, the Flycon system works outdoors but as-
sumes active LED markers are worn on the body. This ef-
fectively takes the concept of traditional marker-based mo-
cap, using IR sensors and retroreflective markers, and ex-
tends it to flying cameras. Their system works outdoors and
the approach leverages the robust and mature algorithms
available for IR based MoCap systems. Like earlier work
[7] the approach jointly estimates body pose and camera
extrinsics. The highly visible markers significantly sim-
plify the problem but require a subject preparation step to
place the IR markers on the subject’s body. Because of this
simplification, Flycon runs in realtime whereas our method
takes a two-stage approach. We perform rough realtime 3D
tracking of the human during capture and then off-line we
estimate the 3D pose. This works well for motion capture
but would not be appropriate for a realtime human-robot in-
teraction scenario.

Here we show that explicit LED markers are not nec-
essary, given recent advances in 2D human joint location
estimation using deep networks [5, 8]. However, due to the
small apparent size of the subject and aerial views, these
methods result in a noisy estimate.

Recent work also shows promise in 3D human pose esti-
mation from monocular data [4, 12, 17, 19], but these meth-
ods do not use multiple camera views. These 3D estimates
from separate cameras cannot be fused easily due to am-
biguity in scale and perspectives. In [10] they extend SM-
PLify to multiple camera views but assume the cameras are
stationary. OpenPose [5] also can take multiple calibrated
camera images and return 3D joint locations but this ap-
proach cannot deal with the inaccurate calibration of flying
cameras. Although the 3D estimate from these methods can
not be used directly, in our proposed approach we leverage
them as noisy sensors for 2D joints positions and show how
they can be efficiently fused to obtain a consistent 3D pose
and shape estimate.

For outdoor capture, there are other technologies that
do not rely on computer vision. Commercial systems, like
Xsens are based on subject-mounted inertial measurement
units (IMUs) and recent work has shown that body pose can
be estimated from a small number of such units [11, 26].
These methods have several limitations however. Subject
preparation is required, the subject has to be cooperative,
and the sensors can affect movement. Additionally, the
IMUs drift and can be significantly affected by metal in the
environment. Several methods combine cameras [25, 24] or
depth sensors [32] and IMUs to address some of these prob-
lems. Here we use an IMU method to create reference data
(pseudo ground truth) for the evaluation of our purely RGB



solution.

3. Proposed Approach

We first describe our motion capture hardware and the
online phase. Then we discuss our system pipeline in de-
tail by introducing mathematical symbols and notations fol-
lowed by the algorithm. The pipeline consists of four steps.

3.1. Step 1 : MoCap system setup and online data
acquisition phase

Step 1 in Fig. 2 shows our MAV-based outdoor motion
capture system tracking and following a person. It con-
sists of a team of self-designed 8-rotor MAVs (see in Step
3 in Fig. 2 inset). Each MAV is equipped with a 2MP HD
camera, a computer with an Intel i7 processor, an NVIDIA
Jetson TX1 embedded GPU and an OpenPilot Revolution'
flight controller board. We use the flight controller’s posi-
tion and yaw controller as well as its GPS and IMU-based
self-pose (position and orientation) estimation functionali-
ties.

To detect, track and follow the person, we use a
perception-driven formation approach [21, 23]. Each copter
runs a single shot detector (SSD) multibox [15] on the im-
ages acquired by its camera using its on-board GPU to de-
tect the person’s outer bounding box on the image frames.
A detection rate of ~4 Hz is achieved during the online
acquisition. The MAVs then share the person’s 2D image
bounding box positions and their 3D self-pose estimates
wirelessly between each other. Subsequently, using a co-
operative detection and tracking (CDT) filter [21] that runs
on-board each MAV’s CPU, they estimate the 3D position
of the person’s center of mass in a consistent world frame
(GPS-frame). Using this method, the MAVs also improve
their 3D self-pose localization. One key feature of the CDT
filter is that it allows the detector to focus on the most in-
formative region of interest (ROI) on future image frames,
thereby making it computationally efficient. Note that even
though the detections are obtained at ~4 Hz, the CDT filter
runs at ~30 Hz, alternating between the standard prediction
and update steps, except that the updates happen at a lower
frequency.

In the online phase, the goal is to keep the person in the
field of view and centered in each MAV’s camera. Addi-
tional constraints include maintaining threshold distances
to the other MAVs and static obstacles. To this end, each
MAV runs a model predictive control (MPC)-based forma-
tion controller [23] on its on-board CPU. The MPC’s objec-
tive is to maintain a threshold distance to the subject while
adhering to the aforementioned formation constrains. Ori-
enting the MAV towards the subject is achieved using an
additional yaw controller (separate from the MPC). Further

lOpenPilot: http://www.librepilot.org/site/index.html

details regarding the CDT tracker and formation controller
can be obtained from [21] and [23], respectively.

During the online phase, all MAVs save images on-board
at ~40 Hz and their self-pose estimates at ~100 Hz. As the
camera is rigidly mounted on each MAV, the extrinsics of
the camera are obtained using a fixed and known transfor-
mation from the MAV’s self-pose (position and orientation)
in the world frame.

3.2.Step 2 : 2D region of interest and MAYV self pose
refinement

In this step, we run the CDT algorithm of Step 1 offline
to improve the subject’s tracked position estimate and each
MAV’s self pose estimates. The SSD Multibox detector
runs on every frame in Step 2. The CDT filter leverages
these every-frame observations to obtain the ROIs for every
image and improve the MAV self-pose estimates.

3.3. Step 3 : Offline pose estimation

The rest of this section discusses Step 3 in which the
person’s pose and shape, as a function of time, is estimated
using the data acquired in the online phase (Step 1) and re-
fined in Step 2. Note that Step 4 concerns comparison with
ground truth and is, therefore, discussed in the next section
with experiments and results.

3.3.1 Preliminaries

Consider a system with C' moving cameras. The intrinsic
parameters of each camera are fixed. Since the cameras are
moving in the world frame, their extrinsic parameters (rota-
tion vector, translation vector) are changing over time. The
rotation vector (3 x 1) and position vector (3 x 1) of cam-
era c at any time instant ¢ is represented as r.; and p_,
respectively. '

SMPL [16] is a state of the art human body model. It
is learned by using thousands of high-quality body scans of
people with a wide variety of body types. It is parameter-
ized by two latent parameters: pose and shape. The pose
parameter is represented by 6. It is a 72 x 1 vector, i.e.
3 axis angle values for each of the 23 joints and 3 values
for root (pelvis) joint location (23*3+3=72). The SMPL
shape parameter 3 is a (10 x 1) vector whose elements are
weights of the 10 most significant eigen shapes (refer [16]
for details).

2D joint detections on the collected images can be highly
noisy. We use multiple 2D joint detectors for robustness.
Say we use D detectors and each detector gives N joints
positions on camera plane. The position of n'" joint given
by d*" detector on ¢! camera plane at time instant ¢ is a
2 x 1 vector represented as jZ’td. The detector also gives a
confidence value in terms of probability for each detected
joint. It is represented as wZ’td.



The SMPL pose vector @ is the collection of all the joint
angles. However, human poses do not span the entire an-
gle space. To restrict 6 to the natural pose space, we use
another parameterization, with a known distribution. This
method, also called Vposer, is first introduced in [20]. The
new parameterization of human pose, has 32 elements, and
is the latent space of a VAE (Variational Auto Encoder) [13]
with a Normal distribution. Vposer is trained on more than
1 million poses of multiple subjects and is capable of pro-
ducing novel, realistic human poses. For more details on
the data and actual training procedure refer to [20]. Vposer
provides a mapping from the latent variable z to full pose
variable 6 given as

0 =V(z). (1)

We can exploit the known distribution of the latent vari-
able as a prior in our optimization objective, by keeping its
values close to the mean of the Normal distribution. This
translates to a simple L2 norm on the new parameterization.

3.3.2 Algorithm

We use the detected 2D joints and intrinsic parameters to
optimize for body model parameters along with camera ex-
trinsics. Camera extrinsics are initialized with the refined
estimates obtained in Sec. 3.2. This is done independently
for each time step.

Per-frame fitting We minimize a cost function at each
time step ¢, which can be decomposed into the following
components:

E(ri..ctPr...cus %t By) =

Eosp + M pErp+ A E. + AgEg, @)
where A, p, A; and A\g are weights of the corresponding
components.

The first term ensures that the 2D projection of the
model’s 3D joints remains close to the observed 2D joints.
It is given as

EZD(Zt7 ﬁta TCytvpc,t) =
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where [J" is the joint regressor function that gives the n'"
joint position given the SMPL pose and shape parameters.
II is the projection function that projects the 3D point on the
image plane, given camera parameters. p,, is the Geman-
McClure robust penalty function with a fixed parameter o,
written as
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As explained in Sec. 3.1, camera extrinsic parameters are
obtained directly from the MAV’s self-pose data saved dur-
ing the flights made by the MAV formation. The self-pose
estimates of the MAVs are prone to various sources of er-
ror, e.g., GPS and IMU drifts and changing prevelant wind
speeds causing fluctuations in the barometer measurements.
This causes the camera extrinsic parameters to be noisy.
Hence, we also optimize for the camera extrinsic parame-
ters, with the objective of keeping them close to the values
estimated online by the MAVs, by including another cost
term,

E”‘yp = Pos (TCJ - FC,t) + Pos (pc,t - p~c,t)> (5)

where 7. ; and p, , are the rotation and position vectors of
camera c at any time ¢ estimated online by the MAVs dur-
ing the data acquisition phase. p,, is the same function
described in (4).
FE,, is a regularization term on the latent pose parameter
z given as
E. = |2. ©)

B is a vector of the 10 most significant eigen shapes of
SMPL, which we regularize with Eg as

Eg =B (7

4. Experiments and Results
4.1. Data Acquisition

Using our MAV-based motion capture system described
in Sec. 3.1, we performed a data collection formation flight
using 3 MAVs. Our on-board formation controller, MAV
self-pose and person’s (3D position, not joint poses) state
estimator, etc., are implemented as Robot Operating Sys-
tem (ROS) nodes which makes it easier for MAVs to com-
municate with each other using standard message types.
The MAV formation constraints of altitude and horizontal
distance from the subject is set to 8m. The value is rel-
atively high due to safety considerations. During the for-
mation flight, the subject is requested to walk on a grassy
field at slow to moderate speeds and later perform ran-
dom motion sequences, such as jumping jacks, bending for-
ward/backward, swaying arms, etc.

4.2. Dataset

All images and camera extrinsic and intrinsic parameters
are saved on-board each MAV as ROS messages in a rosbag
file. Each message has Unix timestamp denoting the time
of its acquisition. We receive images from each camera at
approx. 30-40 frames per second (fps). Even though both



MAV cameras have the same frame rates, they are not syn-
chronized. Meaning, they do not necessarily capture im-
age frames simultaneously. For any image from the first
MAV’s camera, there might not exist an image from the
other MAV’s camera at the same instant. Also, as camera
parameters are available at a much higher frequency than
images, for each image in the system, camera intrinsic and
extrinsic parameters are available. Later, we extract data
from the saved bagfile, refine them and use it to estimate the
shape and pose of the subject using the method described in
Sec. 3.3.

4.3. Reference Data

We obtain reference (ref) data to evaluate our reconstruc-
tions from two different systems, i) a commercially avail-
able IMU MoCap system (Xsens) [3] and ii) a pair of dif-
ferential GPS modules. IMU system is used to obtain ref-
erence data for body pose relative to the root joint. For ref-
erence SMPL parameters, we use a state of the art IMU
MoCap method Sparse Inertial Poser (SIP) [27]. It uses raw
data from Xsens and gives SMPL parameters. However,
the global root joint position and orientation from SIP are
not reliable for ref comparison. To solve this issue, we use
a pair of differential GPS modules, each one attached to a
shoulder of the subject to get the position of root joint in the
global coordinate system. The reference global root orien-
tation still remains unestimated as it is not directly measur-
able with these two systems.

4.4. Implementation

Using the approach in [21] the MAVs autonomously
maintain a formation around the person while following
him/her and keeping him/her centered in their camera’s field
of view. During the formation flights, the MAVs detect
the person in their camera image using single shot detector
(SSD) multibox [15] and estimate his/her 3D world position
(not the joint pose) and uncertainty associated, in order to
maintain the formation. This also results in a cropped region
of interest (ROI) which has the highest likelihood of having
the person inside it. For every image, the MAVs also save
this corresponding ROI. The ROI data and MAV self pose
estimates are then refined offline and saved. We crop the
full images based on the provided ROIs and apply multiple
joint detectors, each producing a set of 2D joints estimates.
If the ROI goes outside the camera frame, we take the full
image for 2D joint detection.

We then use two state of the art 2D joint detectors: al-
phapose [8, 30] and OpenPose [5, 22, 29]. All the dataset
images are processed using these joint estimators and their
output is saved with the same timestamp as that of the im-
age. We use these 2D joints along with the camera extrinsic
and intrinsic parameters in our cost function as given in (2).
Since the cameras are not synchronized, we use the closest

actual shape shape estimation

Joint €ip €ja €jp €ja
L_Hip 0 6.73 | 0 6.81
L_Knee 0.0767 | 8.60 | 0.0876 | 8.69
L_Ankle | 0.1629 | 5.49 | 0.1904 | 5.50
L _Foot 0.1843 | 9.71 | 0.2157 | 9.44
R_Hip 0 6.62 | 0 6.60
R_Knee 0.0680 | 9.59 | 0.0760 | 9.67
R_Ankle | 0.1251 | 7.79 | 0.1448 | 7.73
R_Foot 0.1461 | 8.10 | 0.1693 | 7.86
Spinel 0 532 |0 5.18
Spine2 0.0264 | 3.01 | 0.0290 | 2.96
Spine3 0.0397 | 1.61 | 0.0439 | 1.59
Neck 0.0931 | 6.25 | 0.1068 | 6.11
Head 0.1237 | 5.13 | 0.1428 | 4.90
L_Collar | 0.0683 | 4.09 | 0.0771 | 3.82
L_Shoulder | 0.0779 | 13.15 | 0.0861 | 13.28
L_Elbow | 0.0863 | 16.41 | 0.1023 | 16.15
L_Wrist 0.1689 | 10.46 | 0.1984 | 10.21
L_Hand 0.2045 | 2.34 | 0.2411 | 2.30
R_Collar | 0.0694 | 5.55 | 0.0777 | 5.23
R_Shoulder | 0.0919 | 10.96 | 0.0993 | 10.87
R_Elbow | 0.0987 | 22.15 | 0.1075 | 21.65
R_Wrist 0.1781 | 11.41 | 0.2013 | 11.29
R_Hand 0.2134 | 3.19 | 0.2417 | 3.19
Pelvis aligned with the ref

Table 1: Mean error in joint positions (meters) and joint angles (degrees)
(using actual body shape vs shape estimation). Pelvis joint is aligned with
the ref. The position error for L_Hip, R_Hip and Spinel becomes O because
these joints are rigidly connected to the Pelvis.

frames in time from all the cameras for per-frame fitting.
We use a PyTorch [1] implementation of SMPL to regress
from SMPL parameters to 3D joint positions in (3). The to-
tal cost is sequentially minimized for each frame to get the
optimized value of SMPL pose and camera extrinsic param-
eters. The value of o1 (3) and o4 (5) are 40 and 10 respec-
tively. We found after trial-and-error that these values work
well. After optimizing for a frame, the optimized parame-
ter values are used as initial values for the next frame except
for the camera extrinsics. These are initialized with the ones
obtained from Sec 3.2. For optimization, we use the Adam
optimizer from PyTorch. The number of iterations for the
first frame is 1000 with 0.25 learning rate and 100 with 0.1
learning rate for subsequent frames.

4.5. Results and Discussion

First, we compare our reconstructed pose with the ref-
erence pose. In this, we zero out the global position and
rotation of the reconstructed SMPL and ref SMPL. In Ta-
ble 1, we show the mean error in joint positions (e;,) and
mean error in joint angles (ejq). € is calculated by taking
the Euclidean distance between each estimated joint and the



Figure 3: Pose and shape estimation results of our approach overlaid on some of the image sequences from one of the MAV’s camera. (Left) A walking

sequence. (Right) A sequence with arbitrary hand and leg movement.

corresponding reference joint and then calculating its mean
over the whole dataset. e;, is calculated by taking angle dif-
ference between the reconstructed joint angle and the corre-
sponding reference joint angle and taking a mean over time
and over all the 3 axes. We show these errors in two cases
1) using actual body shape 2) with subject shape estima-
tion. In case 1, we fix the shape to the actual shape obtained
by scanning the person. In case 2, the shape is optimized
in Step 3 of the system pipeline (2). We observe that the
error is higher for the joints corresponding to the extremi-
ties. This is because vposer is not trained with the extreme
poses. We use a pose regularization in (6) which penalizes
the distance from the mean pose of vposer. Since, the ex-
treme poses have more variation in extremity joints, these
joints are penalized more. We notice that including shape
estimation in Step 3 does not affect the error significantly.
However, the per-frame fitting does not make sure that the
shape remains same for the whole sequence. For a better
shape estimate, instead of the per-frame fitting, the com-
plete sequence should be optimized with constant shape for
the whole sequence.

For all the further results, we fix the shape to the actual
shape of the person and all the errors presented are joint
position errors in meters.

4.5.1 Pose Evaluation

In Fig. 3 we present qualitative results of our pose estima-
tion. Quantitative results are presented in Fig. 4, where we
show the mean joint position error with time. At every time

instant we calculate the number of detections as mngDf,
c

where D¢ denotes the detections obtained by detector d for
MAV camera c. In Fig. 4 we show the number of detections
in the background represented by a color scheme. We can
see that the mean joint position error becomes high when
the number of detections is less, which was expected from
our approach. This shows that observations from multiple
views add confidence to the estimated pose. For more im-
ages and renderings of the experiments see supplementary
material.

4.5.2 Global Position Evaluation

We use the absolute position from the differential GPS mod-
ules mounted on the subject’s shoulders. These modules are
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Figure 4:  Mean joint position error in every frame. Background color
denotes the number of detections at that frame calculated as explained in
Sec.4.5.1.

in a coordinate system which has a constant offset to our
system’s coordinate system. We find this offset by taking a
mean difference between estimated and ref position for first
200 frames and correct it manually.

All the Steps 1, 2 and 3 provide the person’s position.
We denote these by J9,,J, and J§; respectively and the
ref root position by 7%, ¢- We show the X, Y and Z com-
ponents of these in Fig. 5. In the motion sequence shown
in this experiment, the subject first moves on a zig-zag tra-
jectory over a sloped terrain with moderate speed. This can
be seen in the ref plots for the initial 4700 frames. Then the
subject performs various random body pose sequences like
jumping jacks, punching, dancing etc., with small motion in
global position. This is reflected in the plots as there is not
much variability in the ref position.

In the inset of Fig.5, we show box plot of the Euclidean
error of 73, T, JO5 with respect to J2, 5o We see that
the estimate improves in Step 2 and further in Step 3. If we
do not optimize for camera parameters in Step 3 our per-
son position estimates are unchanged from that of Step 2.
This indicates that the optimization of camera parameters
improves the person’s global pose estimate. However, look-
ing at the outliers we can say that the maximum error can go
even higher than the maximum error of Step 1. To analyze
this, we look at the last three plots of Fig.5. The background
represents the same as in Fig.4. In these plots, we show the
signed error of 79, J&, J3; with respect to J,, - No-
tice there are two error components in these plots. One is
a slowly varying component and another is rapidly varying.
We show the rapidly varying component by plotting a mov-
ing average result over the error. The slow varying error is
due to the drift in MAVs GPS. Since the person’s position
estimate is dependent on the MAVs poses, this drift is re-
flected in the person’s position error. The rapidly moving
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Figure 5: Top three plots show the root position trajectories from ref, Step
1,2 and 3 in X, Y and Z dimension, respectively. Bottom three plots are
signed error of the estimated root position from all three steps with respect
to the ref. See Sec.4.5.2 for details.

error is due to the observation error in our 2D estimates.
We see there are sudden jumps in the pose error from Step
3. These correspond to the outliers shown in the inset of the
second plot of Fig.5. We see in the last three plots that these
jumps happen when there are fewer detections, which is ex-
pected. Since there are fewer detections or no detections

in some camera frames, the whole optimization becomes
unconstrained. In such a scenario, it becomes highly sus-
ceptible to observation errors and the camera pose can be
adjusted to fit an erroneous observation.

5. Conclusion

In this paper, we presented AirCap, the first successful
demonstration of full-body markerless motion capture from
autonomous flying vehicles. AirCap addresses the chal-
lenges of i) online image data acquisition of a tracked hu-
man subject by multiple fully autonomous MAVs, and ii)
human body pose and shape estimation using the acquired
image dataset. We show how we leverage state-of-the-art
2D human joint detection methods as noisy sensors and fuse
them to obtain consistent 3D estimates of human pose and
shape. We show quantitative results by evaluating our re-
constructions using reference data. We also show qualita-
tive results by projecting the estimated pose over the ac-
quired images. One of the most important advantages of our
method is that it completely removes the need for a subject
preparation step, thereby allowing in-the-wild motion cap-
ture of any subject.

6. Limitations and Future Work

The main limitation of our approach is the estimate of
the root joint position. Since we compute camera extrinsics
estimates from Step 2 and do not optimize over them in a ro-
bust way, we are limited by them. Another limitation of our
system is that, as the MAV navigates, it could lose the sub-
ject from its FOV during transient behavior. Since the cam-
era is rigidly attached to the MAVs and our convex MPC is
formulated with the assumption of linear MAV dynamics, a
MAV’s camera, and hence the image it acquires, appears to
shake when the MAV changes its motion direction. In the
future, we plan to address this by mounting the camera on a
gimbal attached to the MAV frame and separately handle its
control. We plan to explore methodologies to optimize cam-
era extrinsics in an integrated approach rather than doing it
in three hierarchical steps. We also want to utilize realis-
tic human motion models to improve the temporal natural-
ness of the captured motion. Finally, extending our method
to larger and complex outdoor scenarios as well as motion
capturing multiple subjects are also included in our future
work.
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