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CAUSAL AND ANTICAUSAL LEARNING [2]
For many learning settings it matters whether a feature X is a cause or an effect of a target Y !

1. Causal Learning: X → Y

• P (X) and P (Y |X) are independent, i.e.
share no information

• Covariate shift holds: changes in P (X)
should have no effect on P (Y |X)

• SSL impossible: P (X) does not contain
information about P (Y |X)

2. Anticausal Learning: Y → X

• P (Y ) and P (X|Y ) are independent, but
P (X) and P (Y |X) are dependent

• Covariate shift does not hold: changes in
P (X) can have an effect on P (Y |X)

• SSL possible: P (X) contains information
about P (Y |X)

OBJECTIVE
Improving an adapted model with unlabelled
data when labelled data is scarce, that is,
combining covariate-shift (CS) adaptation and
semi-supervised learning (SSL):

D XC Y XE

Adaptation SSL

BACKGROUND
• CS assumption: P (X) changes, but
P (Y |X) remains domain invariant.

• Current CS approaches use unlabelled
data for importance reweighting [3, 5] or
learning domain-invariant features [1].

• Classifier is trained on labelled data only.

• When amount of labelled data is the bot-
tleneck, also use unlabelled data for SSL.

• Combining CS and SSL requires learning
with both cause and effect features [2, 4].

PROBLEM SETTING
Given:
• small labelled source-domain (D = 0)

sample, (xiC , y
i, xiE) ∼ P (XC , Y,XE |D =

0)

• large unlabelled target-domain (D = 1)
sample, (xjC , x

j
E) ∼ P (XC , XE |D = 1)

Goal:
• minimise expected target-domain loss,
EP (XC ,Y,XE |D=1)

[
L
(
Ŷ (XC , XE), Y

)]
Assumption:
• underlying structural causal model is

known to be of the form (see Figure 1):
XC := fC(D,NC)

Y := fY (XC , NY )

XE := fE(Y,NE)

SEMI-GENERATIVE MODELLING APPROACH
Main Idea: Condition on causal features, but explicitly model the distribution of effect features.

Discriminative Model Semi-Generative Model Generative Model

P (Y |XC , XE , θ) P (Y,XE |XC , θ) P (XC , Y,XE |D, θ)
domain-invariant domain-invariant not domain-invariant

cannot use unlabelled
data (xC , xE) for SSL

can use unlabelled data
(xC , xE) for SSL

can use unlabelled data
(xC , xE) for SSL

Supervised source-domain log-likelihood:

`S(θ) =
1

nS

nS∑
i=1

(
logP (yi|xiC , θ) + logP (xiE |yi, θ)

)
Unsupervised target-domain log-likelihood:

`T (θ) =
1

nT

nS+nT∑
j=nS+1

log
(∑
y∈Y

P (y|xjC , θ)P (x
j
E |y, θ)

)
Interpolated pooled log-likelihood with λ ∈ (0, 1):

`λP (θ) = λ `S(θ) + (1− λ) `T (θ)

Factorisation of semi-generative model:

P (Y,XE |XC , θ) = P (Y |XC , θ)P (XE |Y, θ)

D XC Y XE

NC NY NE

fC fY fE

fE◦fY

Figure 1: SSL by learning a noisy composition
of fY and fE from unlabelled data (xC , xE).

RESULTS ON SYNTHETIC CLASSIFICATION DATA

• θS = argmaxθ `S(θ), supervised baseline

• θλP = argmaxθ `
λ
P (θ), pooled estimator

• θWS , importance-weighted form of θS [3]

• θLR, logistic-regression on (XC , XE)
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Figure 2: Results for nS = 8 labelled examples using λ = nS
nS+nT

for µ = 0.5 (left), and µ = 2 (right), where µ
determines the amount of information XE carries about Y : XE |(Y = ±1) ∼ N (±µ, 1).

FUTURE WORK
• Relax assumptions to the more general

setting by allowing XC → XE .

• Incorporate common assumptions such
as clustering or low density separation
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