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OBJECTIVE CAUSAL AND ANTICAUSAL LEARNING [2]

Improving an adapted model with unlabelled For many learning settings it matters whether a feature X is a cause or an effect of a target Y'!

data when labelled data is scarce, that is, . . .
combining covariate-shift (CS) adaptation and | | 1- Causal Learning: X' — Y 2. Anticausal Learning: ¥ — X

semi-supervised learning (SSL): e P(X)and P(Y|X) are independent, i.e. e P(Y)and P(X|Y) are independent, but
share no information P(X) and P(Y|X) are dependent
@ @ >@ @ e Covariate shift holds: changes in P(X) e Covariate shift does not hold: changes in
~ ~ - ~ - should have no effect on P(Y|X) P(X) can have an effect on P(Y|X)
Adaptation SSL . . . o o .
e SSL impossible: P(X) does not contain e SSL possible: P(X) contains information

information about P(Y | X) about P(Y|X)

BACKGROUND
o (S assumption: P(X) changes, but| ESYAYICIEINNT-NIAA Y (010 SRR LWLV 2V N 5!

P(Y|X) remains domain invariant. . = - R
Main Idea: Condition on causal features, but explicitly model the distribution of effect features.

Current CS approaches use unlabelled

data for imporjcan.ce reweighting [3, 5 O1 Discriminative Model Semi-Generative Model  Generative Model
learning domain-invariant features [1].
P(Y|XC7XE7(9) P(Y7 XE‘XC'76)) P(X07Y7XE|D76))
Classifier is trained on labelled data only. . . . . . .
domain-invariant domain-invariant not domain-invariant

When amount of labelled data is the bot- cannot wuse unlabelled can use unlabelled data can use unlabelled data
tleneck, also use unlabelled data for SSL. data (z¢, x ) for SSL (¢, zg) for SSL (xc, 2 ) for SSL

Combining CS and SSL requires learning
with both cause and effect features |2, 4]. Supervised source-domain log-likelihood: Factorisation of semi-generative model:

R o . P(Y, Xg|Xc,6) = P(V|Xc,0)P(Xp|Y,0)
PROBLEM SETTING ls(0) = @ Z (logP(y 20, 0) +log P(xg|y 79)) foof
i=1 ECJY

Given: R
Unsupervised target-domain log-likelihood:

e small labelled source-domain (D = 0) @ . - » >
Sample/ (‘/EZCWyZ?ZE?E) ™~ P(Xc,Y, XE|D — ns+nr @ @
0) fc fy fE

éT(9)=% > log(ZP(y\wéﬁ)P(w%Iyﬁ))

e large unlabelled target-domain (D = 1) s vey
sample, (v, 2p) ~ P(X¢, Xp|D =1) Interpolated pooled log-likelihood with A € (0, 1): @ @ @
Goal: @D(Q) = Alg(0) + (1 — \) 41 (0) Figure 1: SSL by learning a noisy composition

e minimise expected target-domain loss, of fy and fg from unlabelled data (z¢, z ).

L p (XY Xg|D=1)| L (Y(XC, Xg),Y)

RESULTS ON SYNTHETIC CLASSIFICATION DATA

Assumption:

e underlying structural causal model is e (g = argmax, {g(f), supervised baseline e Oy s, importance-weighted form of 6g [3]
known to be of the form (see Figure 1):

e 07 = argmax, {7(0), pooled estimator e 01 R, logistic-regression on (X¢, Xg)
XC .= fC’(DvNC)
Y = fy(Xe, Ny) o5b — —___ ______ T o5b————______] o07fT oo
Xp = YN 5_ _E | | 5_ | 0.6 -
g = fe(Y,Ng) 24| 5 e — | 24 | oo
2.3F | @ 2.3F | 2 0.04
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e Relax assumptions to the more general : ; 0.02
setting by allowing X¢ — XE. 2 2
e Incorporate common assumptions such P 0.2 F ot n P ———— EEE——
P , , P . 10° 10" 10% 10°® 10% 10° 10" 10% 10° 10* 10° 10" 10% 10%® 10* 10° 10" 10% 10° 10*
as clustering or low density separation n n n n

Figure 2: Results for ns = 8 labelled examples using A = —=— for u = 0.5 (left), and p = 2 (right), where u

unlabelle . ] . . ng+nT
nlabelled determines the amount of information X g carries about Y: Xg|(Y = +1) ~ N (£u,1).
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