Autonomous Robots
https://doi.org/10.1007/s10514-021-09990-9

®

Check for
updates

How to train your differentiable filter

Alina Kloss'(® - Georg Martius' - Jeannette Bohg?

Received: 15 December 2020 / Accepted: 27 May 2021
© The Author(s) 2021

Abstract

In many robotic applications, it is crucial to maintain a belief about the state of a system, which serves as input for planning
and decision making and provides feedback during task execution. Bayesian Filtering algorithms address this state estimation
problem, but they require models of process dynamics and sensory observations and the respective noise characteristics of
these models. Recently, multiple works have demonstrated that these models can be learned by end-to-end training through
differentiable versions of recursive filtering algorithms. In this work, we investigate the advantages of differentiable filters
(DFs) over both unstructured learning approaches and manually-tuned filtering algorithms, and provide practical guidance
to researchers interested in applying such differentiable filters. For this, we implement DFs with four different underlying
filtering algorithms and compare them in extensive experiments. Specifically, we (i) evaluate different implementation choices
and training approaches, (ii) investigate how well complex models of uncertainty can be learned in DFs, (iii) evaluate the
effect of end-to-end training through DFs and (iv) compare the DFs among each other and to unstructured LSTM models.

Keywords Differentiable filters - State estimation - Learned noise models - Learning and structure

1 Introduction

In many robotic applications, it is crucial to maintain a belief
about the state of the system over time, like tracking the loca-
tion of a mobile robot or the pose of a manipulated object.
These state estimates serve as input for planning and deci-
sion making and provide feedback during task execution. In
addition to tracking the system state, it can also be desirable
to estimate the uncertainty associated with the state predic-
tions. This information can be used to detect failures and
enables risk-aware planning, where the robot takes more cau-
tious actions when its confidence in the estimated state is low
(Todorov 2005; Pontoén et al. 2020).

The authors thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Alina Kloss.

X Alina Kloss
Alina.Kloss @tuebingen.mpg.de

Georg Martius
Georg.Martius @tuebingen.mpg.de

Jeannette Bohg

bohg @stanford.edu

Max Planck Institute for Intelligent Systems, Tiibingen,
Germany

2 Stanford University, Stanford, USA

Published online: 09 June 2021

Recursive Bayesian filters are a class of algorithms that
combine perception and prediction for probabilistic state
estimation in a principled way. To do so, they require an
observation model that relates the estimated state to the sen-
sory observations and a process model that predicts how the
state develops over time. Both have associated noise mod-
els that reflect the stochasticity of the underlying system and
determine how much trust the filter places in perception and
prediction.

Formulating good observation and process models for the
filters can, however, be difficult in many scenarios, espe-
cially when the sensory observations are high-dimensional
and complex, like camera images. Over the last years, deep
learning has become the method of choice for processing
such data. While (recurrent) neural networks can be trained
to address the full state estimation problem directly, recent
work (Jonschkowski and Brock 2016; Haarnoja et al. 2016;
Jonschkowski et al. 2018; Karkus et al. 2018) showed that it
is also possible to include data-driven models into Bayesian
filters and train them end-to-end through the filtering algo-
rithm. For Histogram filters (Jonschkowski and Brock 2016),
Kalman filters (Haarnoja et al. 2016) and Particle filters (Jon-
schkowski et al. 2018; Karkus et al. 2018), the respective
authors showed that such differentiable filters (DF) systemat-
ically outperform unstructured neural networks like LSTMs

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-021-09990-9&domain=pdf
http://orcid.org/0000-0001-5793-1875

Autonomous Robots

(Hochreiter and Schmidhuber 1997). In addition, the end-
to-end training of the models also improved the filtering
performance compared to using observation and process
models that had been trained separately.

A further interesting aspect of differentiable filters is that
they allow for learning sophisticated models of the obser-
vation and process noise. This is useful because finding
appropriate values for the noise models is often difficult
and despite much research on identification methods (e.g.
Bavdekar et al. (2011); Valappil and Georgakis (2000)) they
are often tuned manually in practice. To reduce the tedious
tuning effort, the noise is then typically assumed to be
uncorrelated Gaussian noise with zero mean and constant
covariance. Many real systems are, however, better described
by heteroscedastic noise models, where the level of uncer-
tainty depends on the state of the system and/or possible
control inputs. Taking heterostochasticity of the dynamics
into account has been demonstrated to improve filtering per-
formance in many robotic tasks (Bauza and Rodriguez 2017,
Kersting et al. 2007). Haarnoja et al. (2016) also show that
learning heteroscedastic observation noise helps a Kalman
filter dealing with occlusions during object tracking.

In this paper, we perform a thorough evaluation of differ-
entiable filters. Our main goals are to highlight the advantages
of DFs over both unstructured learning approaches and
manually-tuned filtering algorithms, and to provide guidance
to practitioners interested in applying differentiable filtering
to their problems.

To this end, we review and implement existing work on
differentiable Kalman and Particle filters and introduce two
novel variants of differentiable Unscented Kalman filters.
Our implementation for TensorFlow (Abadi et al. 2015) is
publicly available.! In extensive experiments on three differ-
ent tasks, we compare the DFs and evaluate different design
choices for implementation and training, including loss func-
tions and training sequence length. We also investigate how
well the different filters can learn complex heteroscedas-
tic and correlated noise models, evaluate how end-to-end
training through the DFs influences the learned models and
compare the DFs to unstructured LSTM models.

2 Related work

2.1 Combining learning and algorithms

Integrating algorithmic structure into learning methods has
been studied for many robotic problems, including state esti-
mation (Haarnoja et al. 2016; Jonschkowski and Brock 2016;
Jonschkowski et al. 2018; Karkus et al. 2018; Ma et al. 2020),
planning (Tamar et al. 2016; Karkus et al. 2017; Oh et al.

1 https://github.com/akloss/differentiable_filters.

@ Springer

2017; Farquhar et al. 2018; Guez et al. 2018) and control
(Donti et al. 2017; Okada et al. 2017; Amos et al. 2018;
Pereira et al. 2018; Holl et al. 2020). Most notably, Karkus
et al. (2019) combine multiple differentiable algorithms into
an end-to-end trainable “Differentiable Algorithm Network”
to address the complete task of navigating to a goal in a previ-
ously unseen environment using visual observations. Here,
we focus on addressing the state estimation problem with
differentiable implementations of Bayesian filters.

2.2 Differentiable Bayesian filters

There have been few works on differentiable filters so far.
Haarnoja et al. (2016) propose the BackpropKF, a differ-
entiable implementation of the (extended) Kalman filter.
Jonschkowski and Brock (2016) present a differentiable His-
togram filter for discrete localization tasks in one or two
dimensions and Jonschkowski et al. (2018) and Karkus et al.
(2018) both implement differentiable Particle filters for local-
ization and tracking of a mobile robot. In the following, we
focus our discussion on differentiable Kalman and Particle
filters, since Histogram filters as used by Jonschkowski and
Brock (2016) are usually not feasible in practice, due to the
need of discretizing the complete state space.

Observation model and noise All three works have in com-
mon that the raw observations are processed by a learned
neural network that can be trained end-to-end through the
filter. In Haarnoja et al. (2016), the network outputs a low-
dimensional representation of the observations together with
input-dependent observation noise (see Sec. 4.2), while in
Jonschkowski et al. (2018); Karkus et al. (2018), a neural
network learns to predict the likelihood of the observations
under each particle given an image and (in (Karkus et al.
2018)) a map of the environment.

As aresult, all three works use heteroscedastic observation
noise, but only Haarnoja et al. (2016) evaluate this choice:
They show that conditioning the observation noise on the raw
image observations drastically improves filter performance
when the tracked object can be occluded.

Process model and noise For predicting the next state, all
three works use a given analytical process model. While
Haarnoja et al. (2016) and Karkus et al. (2018) also assume
known process noise, Jonschkowski et al. (2018) train a net-
work to predict it conditioned on the actions. The effect of
learning action dependent process noise is, however, not eval-
uated.

Effect of end-to-end learning Jonschkowski et al. (2018)
compare the results of an end-to-end trained filter with one
where the observation model and process noise were trained
separately. The end-to-end trained variant performs better,
presumably because it learns to overestimate the process
noise. Possible differences between the learned observation
models are not discussed. The best performance for the filter

https://github.com/akloss/differentiable_filters

Autonomous Robots

could be reached by first pretraining the models individually
and the finetuning end-to-end through the filter.
Comparison to unstructured models All works compare their
differentiable filters to LSTM models trained for the same
task and find that including the structural priors of the fil-
tering algorithm and the known process models improves
performance. Jonschkowski et al. (2018) also evaluate a Par-
ticle filter with a learned process model in one experiment,
which performs worse than the filter with an analytical pro-
cess model but still beats the LSTM.

In contrast to the existing work on differentiable filtering,
the main purpose of this paper is not to present a new method
for solving a robotic task. Instead, we present a thorough
evaluation of differentiable filtering and of implementation
choices made by the aforementioned seminal works. We also
implement two novel differentiable filters based on variants
of the Unscented Kalman filter and compare the differ-
entiable filters with different underlying Bayesian filtering
algorithms in a controlled way.

2.3 Variational inference

A second line of research closely related to differentiable fil-
ters is variational inference in temporal state space models
(Krishnan et al. 2016; Karl et al. 2017; Watter et al. 2015;
Fraccaro et al. 2017; Archer et al. 2015). For a recent review
of this work, see Girin et al. (2020). In contrast to DFs, the
focus of this research lies more on finding generative mod-
els that explain the observed data sequences and are able to
generate new sequences. The representation of the underly-
ing state of the system is often not assumed to be known.
But even though the goals are different, recent results in this
field show that structuring the variational models similarly
to Bayesian filters improves their performance (Karl et al.
2017; Fraccaro et al. 2017; Naesseth et al. 2018; Maddison
et al. 2017; Le et al. 2018).

3 Bayesian filtering for state estimation

Filtering refers to the problem of estimating the latent state x
of a stochastic dynamic system at time step ¢ given an initial
belief bel(xg) = p(Xo), a sequence of observations z; _; and
actions ug_ ;—1. Formally, we seek the posterior distribution
bel(x;) = p(X¢|X0..1—1,Wo..t1—1, Z1..1)-

Bayesian Filters make the Markov assumption, i.e. that the
distributions of the future states and observations are con-
ditionally independent from the history of past states and
observations given the current state. This assumption makes
it possible to compute the belief at time ¢ recursively as

bel(x;) = np(z|x;) / P(X¢[X;—1, w—1)bel(x,—1)dx; 1

= np(z|x,)bel(x,)

where 7 is a normalization factor. Computing bel(x,) is
referred to as the prediction step of Bayesian filters, while
updating the belief with p(z:|x;) is called (observation)
update step.

For the prediction step, the dynamics of the system is
modeled by the process model f that describes how the
state changes over time. The observation update step uses
an observation model h that generates observations given
the current state:

X = f(Xe—1, W1, qr—1) 2, = h(X, 17)
The random variables q and r are the process and observation
noise and capture the stochasticity of the system.

In this paper, we investigate differentiable versions of
four different nonlinear Bayesian filtering algorithms: The
Extended Kalman Filter (EKF), the Unscented Kalman Fil-
ter (UKF), a sampling-based variant of the UKF that we call
Monte Carlo Unscented Kalman Filter (MCUKF) and the
Particle Filter (PF). We briefly review these algorithms in
Online Material 1, Sec. A.

4 Implementation

In this section, we describe how we embed model-learning
into differentiable versions of the aforementioned nonlin-
ear filtering algorithms. These differentiable versions will be
denoted by dEKF, dUKEF etc. in the following.

4.1 Differentiable filters

We implement the filtering algorithms as recurrent neural
network layers in TensorFlow. For UKF and MCUKGE, this is
straight-forward, since all necessary operations are differen-
tiable and available in TensorFlow.

In contrast, the dEKF requires the Jacobian of the process
model F. TensorFlow implements a method for computing
Jacobians, with or without vectorization. The former is fast
but has a high memory demand, while the latter can become
very slow for large batch sizes. Therefore, we recommend to
derive the Jacobians manually where applicable.

4.1.1 dPF
The Particle filter is the only filter we investigate that is
not fully differentiable: In the resampling step, a new set

of particles with uniform weights is drawn (with replace-
ment) from the old set according to the old particle weights.

@ Springer

Autonomous Robots

While the drawn particles can propagate gradients to their
ancestors, gradient propagation to other old particles or to
the weights of the old particle set is disrupted (Jonschkowski
et al. 2018; Karkus et al. 2018; Zhu et al. 2020). If we place
the resampling step at the beginning of the per-timestep com-
putations, this only affects the gradient propagation through
time, i.e. from one timestep ¢ + 1 to its predecessor 7. At
time ¢, both particles and weights still receive gradient infor-
mation about the corresponding loss at this timestep. We
therefore hypothesize that the missing gradients through time
are not problematic as long as we provide a loss at every
timestep.

As an alternative to simply ignoring the disrupted gradi-
ents, we can also apply the resampling step less frequently
or use soft resampling as proposed by Karkus et al. (2018).
We evaluate these options in Sec. 6.2.5.

In addition, we investigate two alternative implementa-
tion choices for the dPF: The likelihood used for updat-
ing the particle weights in the observation update step
can be implemented either with an analytical Gaussian
likelihood function or with a trained neural network as
in Jonschkowski et al. (2018) and Karkus et al. (2018).
The learned observation likelihood is potentially more
expressive than the analytical solution and can be advan-
tageous for problems where formulating the observation
and sensor model is not as straight-forward as in our
experiments. A potential drawback is that in contrast to
the analytical solution, no explicit noise model or sen-
sor network is learned. We compare these two options in
Sec. 6.2.4.

4.2 Observation model

In Bayesian filtering, the observation model %(-) is a gener-
ative model that predicts observations from the state z; =
h(x;). In practice, it is often hard to find such models that
directly predict the potentially high-dimensional raw sensory
signals without making strong assumptions.

We therefore use the method first proposed by Haarnoja
et al. (2016) and train a discriminative neural network ng
with parameters w; to preprocess the raw sensory data D
and create a more compact representation of the observa-
tions z = ny(D, wy). This network can be seen as a virtual
sensor, and we thus call it sensor network. In addition to
z;, the sensor network can also predict the heteroscedastic
observation noise covariance matrix R; (see Sec. 4.4) for the
current input D;.

In our experiments, z contains a subset of the state vector
x. The actual observation model / (x) thus reduces to a simple
linear selection matrix of the observable components, which
we provide to the DFs.

@ Springer

4.3 Process model

Depending on the user’s knowledge about the system, the
process model f(-) for the prediction step can be imple-
mented using a known analytical model or a neural net-
work n,(-) with weights w,. When using neural networks,
we train n,(-) to output the change from the last state
np(X;, u, Wp) = Ax; such that x,41 = X, + Ax,. This form
0X;41

ensures stable gradients between timesteps (since o =

1+ ngt) and provides a reasonable initialization of the pro-
cess model close to identity.

4.4 Noise models

For learning the observation and process noise, we consider
two different conditions: constant and heteroscedastic. In
both cases, we assume that the process and observation noise
at time ¢ can be described by zero-mean Gaussian distribu-
tions with covariance matrices Q; and R;.

A common assumption in state-space modeling is that
Q; and R; are diagonal matrices, but we can also use full
covariance matrices to model correlated noise. In this case,
we follow Haarnoja et al. (2016) and train the noise mod-
els to output upper-triangular matrices L;, such that e.g.
Q = L,LtT . This form ensures that the resulting matrices
are positive definite.

For constant noise, the filters directly learn the diagonal or
triangular elements of Q and R. In the heteroscedastic case,
Q; is predicted from the current state x, and (if available)
the control input u; by a neural network n, (x;, u,, w,) with
weights w,. In dUKF, dIMCUKEF and dPF, n, (-) outputs sep-
arate Q' for each sigma point/particle and Q, is computed as
their weighted mean. The heteroscedastic observation noise
covariance matrix R; is an additional output of the sensor
model ng(D;, wy).

We initialize the diagonals Q; and R; close to given target
values by adding a trainable bias variable to the output of the
noise models. To prevent numerical instabilities, we also add
a small fixed bias to the diagonals as a lower bound for the
predicted noise.

4.5 Loss function

For training the filters, we always assume that we have access
to the ground truth trajectory of the state Xi:O..‘T' In our
experiments, we test the two different loss functions used in
related work: The first, used by Karkus et al. (2018) is simply
the mean squared error (MSE) between the mean of the belief
and true state at each timestep:

T
1
Lise = — > (5 — m)" (% — o). e
1=0

Autonomous Robots

For the dPF, we compute u as the weighted mean of the
particles.

The second loss function, used by Haarnoja et al. (2016)
and Jonschkowski et al. (2018), is the negative log likeli-
hood (NLL) of the true state under the predicted distribution
of the belief. In dEKF, dUKF and dMCUKE, the belief is
represented by a Gaussian distribution with mean g, and
covariance X; and the negative log likelihood is computed
as

T
1 _
Iy = o > log(IZi) + (xf — u) " Z7M =). ()
=0

The dPF represents its belief using the particles x; € X
and their weights ;. We consider two alternative ways of
calculating the NLL for training the dPF: The first is to rep-
resent the belief by fitting a single Gaussian to the particles,

. N N T
withp =3 gmix;and T =3 0o mi(x; — w)(Xi — 1)
and then apply Eq. 2. We refer to this variant as dPF-G.

However, this is only a good representation of the belief if
the distribution of the particles is unimodal. To better reflect
the potential multimodality of the particle distribution, the
belief can also be represented with a Gaussian Mixture Model
(GMM) as proposed by Jonschkowski et al. (2018). Every
particle contributes a separate Gaussian N;i(x', X) in the
GMM and the mixture weights are the particle weights. The
drawback of this approach is that the fixed covariance X of
the individual distributions is an additional tuning parameter
for the filter. We call this version dPF-M and calculate the
negative log likelihood with

T 1X] .
1 ! . .
LniL ==Y log) exp(xl — xHT =1l — xh
T ; —~ /_|Z| 1 t 13 t

3)

5 Experimental setup

In the following, we will evaluate the DFs on three different
filtering problems. We start with a simple simulation setting
that gives us full control over parameters of the system such
as the true process noise (Sec. 6). In Sects. 7 and 8, we then
study the performance of the DFs on two real-robot tasks:
The first is the KITTI Visual Odometry problem, where the
filters are used to track the position and heading of a moving
car given only RGB images. The second is planar pushing,
where the filters track the pose of an object while a robot
performs a series of pushes.

Unless stated otherwise, we will train the DFs end-to-end
for 15 epochs using the Adam optimizer (Kingma and Ba
2015) and select the model state at the training step with the
best validation loss for evaluation. We also evaluate different

learning rates for all DFs. During training, the initial state
is perturbed with noise sampled from a Normal distribution
Ninit (0, Xinir). For testing, we evaluate all DFs with the true
initial state as well as with few fixed perturbations (sampled
from Njyi) and average the results.

More detailed information about the experimental con-
ditions as well as extended results can be found in Online
Material 1, Sec. B-D.

6 Simulated disc tracking

We first evaluate the DFs in a simulated environment sim-
ilar to the one in Haarnoja et al. (2016): the task is to track a
red disc moving among varying numbers of distractor discs,
as shown in Fig. 1. The state consists of the position p and
linear velocity v of the red disc.

The dynamics model that we use for generating the train-
ing data is

Pi+1 =P + Ve +dps

Vel = Ve — fpPr — fdvfsgn(vt) + Qo

The velocity update contains a force that pulls the discs
towards the origin (f, = 0.05) and a drag force that pre-
vents too high velocities (f; = 0.0075). q represents the
Gaussian process noise and sgn(x) returns the sign of x or 0
ifx =0.

The sensor network receives the current image at each
step, from which it can estimate the position but not the
velocity of the target. As we do not model collisions, the red
disc can be occluded by the distractors or leave the image
temporarily.

6.1 Data

We create multiple datasets with varying numbers of distrac-
tors, different levels of constant process noise for the disc

Fig. 1 Two sequential observations from our simulated tracking task.
The filters need to track the red disc, which can be occluded by the other
discs or leave the image temporarily (Color figure online)

@ Springer

Autonomous Robots

position and constant or heteroscedastic process noise for the
disc velocity. All datasets contain 2400 sequences for train-
ing, 300 validation sequences and 303 sequences for testing.
The sequences have 50 steps and the colors and sizes of the
distractors are drawn randomly for each sequence.

6.2 Filter implementation and parameters

We first evaluated different design choices and filter-specific
parameters for the DFs to find settings that perform well and
increase the stability of the filters during training. For detailed
information about the experiments and results, please refer
to Online Material 1, Sec. B.2.

6.2.1 dUKF

The dUKF has three filter-specific scaling parameters, o,
and 8. a and k determine how far from the mean of the belief
the sigma points are placed and how the mean is weighted
in comparison to the other sigma points. B only affects the
weight of the central sigma point when computing the covari-
ance of the transformed distribution.

We evaluated different parameter settings but found no
significant differences between them. In all following exper-
iments, we use « = 1, k = 0.5 and 8 = 0. In general, we
recommend values for which A = (XZ(K +n) — nis a small
positive number, so that the sigma points are not spread out
too far and the central sigma point is not weighted nega-
tively (which happens for negative 1). See Online Material
1, Sec. A.3 for a more detailed explanation.

6.2.2 dMCUKF

In contrast to the dUKF, the dMCUKF simply samples
pseudo sigma points from the current belief. Its only param-
eter thus is the number N of sampled points during training
and testing.

We trained the dIMCUKF with N € {5, 10, 50, 100, 500}
and evaluated with 500 pseudo sigma points. The results
show that as few as ten sigma points are enough for train-
ing the dJMCUKEF relatively successfully. The best results
are obtained with 100 sigma points and using more does not
reliably increase the performance.

In the following, we use 100 points for training and 500
for testing. More complex problems with higher-dimensional
states could, however, require more sigma points.

6.2.3 dPF: belief representation
When training the dPF on Lnrr, we have to choose how
to represent the belief of the filter for computing the likeli-

hood (see Sec. 4.5). We investigate using a single Gaussian
(dPF-G) or a Gaussian Mixture Model (dPF-M). For the

@ Springer

dPF-M, the covariance X of the single Gaussians in the
Mixture Model is an additional parameter that has to be
tuned.

As our test scenario does not require tracking multi-
ple hypotheses, the representation by a single Gaussian in
dPF-G should be accurate for this task. Nonetheless, we
find that the dPF-G performs much worse than the dPF-
M. This could either mean that Eq. 3 facilitates training
or that approximating the belief with a single Gaussian
removes useful information even when the task does not
obviously require tracking multiple hypotheses. Interest-
ingly, when using a learned observation update, this effect
is not noticeable, which suggests that the first hypothesis
is correct. In the following, we only report results for the
dPF-M. Results for dPF-G can be found in Online Material
1.

For the dPF-M, ¥ = 0.2514 (I4 denotes an identity matrix
with 4 rows and columns) resulted in the best tracking errors,
but the best NLL was achieved with ¥ = I4. We thus use
¥ = I for the dPF-M in all following experiments. It is,
however, possible that different tasks could require different
settings.

6.2.4 dPF: observation update

As mentioned before, the likelihood for the observation
update step of the dPF can be implemented with an ana-
lytical Gaussian likelihood function (dPF-(G/M)) or with a
neural network (dPF-(G/M)-1rn).

Our experiments showed that using a learned likelihood
function for updating the particle weights can improve both
tracking error and NLL of the dPF significantly. We attribute
this mainly to the fact that the learned update relaxes some of
the assumptions encoded in the particle filter: With the ana-
lytical version, we restrict the filter to use additive Gaussian
noise that is either constant or depends only on the raw sen-
sory observations. The learned update, in contrast, enforces
no functional form of the noise model. In addition, the noise
can depend not only on the raw sensory data, but also on
the observable components of the particle states. This means
that the learned observation update is potentially much more
expressive than the analytical one, which pays off when the
Gaussian assumption made by the other filtering algorithms
does not hold.

While learning the observation update improves the per-
formance of the dPF, we will still use the analytical variant in
most of the following evaluations. The main reason for this
is that the analytical observation update has explicit models
for the sensor network and observation noise. This facilitates
comparing between the dPF and the other DF variants and
gives us control over the form of the learned observation
noise.

Autonomous Robots

6.2.5 dPF: resampling

The resampling step of the particle filter discards particles
with low weights and prevents particle depletion. It may,
however, be disadvantageous during training since it is not
fully differentiable. Karkus et al. (2018) proposed soft resam-
pling, where the resampling distribution is traded off with
a uniform distribution to enable gradient flow between the
weights of the old and new particles. This trade-off is con-
trolled by a parameter oy € [0, 1]. The higher o, the more
weight is put on the uniform distribution. An alternative to
soft resampling is to not resample at every timestep.

We tested the dPF-M with different values of e and when
resampling every 1, 2, 5 or 10 steps and found that resam-
pling frequently generally improves the filter performance.
Soft resampling also did not have much of a positive effect
in our experiments, presumably because higher values of oy,
decrease the effectiveness of the resampling step. In the fol-
lowing, we use ae = 0.05 and resample at every timestep.

6.2.6 dPF: number of particles

Finally, the user also has to decide how many particles to use
during training and testing. As for the IMCUKE, we trained
the dPF-M with N € {5, 10, 50, 100, 500}. The results were
very similar to dIMCUKF and we also use 100 particles during
training and 500 particles for testing.

6.3 Loss function

In this experiment we compare the different loss functions
introduced in Sec. 4.5, as well as a combination of the two
Lpix = 0.5(LMmsg + Lnrp). Our hypothesis is that Lnpp
is better suited for learning noise models, since it requires
predicting the uncertainty about the state, while Lysg only
optimizes the tracking performance.

Experiment

We use a dataset with 15 distractors and constant process

noise (aqp = 0.1, 04, = 2). The filters learn the sensor and
process model as well as heteroscedastic observation noise
and constant process noise models.
Results As expected, training on Ly, leads to much better
likelihoods scores than training on Lysg for all DFs, see
Fig. 2. The best tracking errors on the other hand are reached
with Lysg, as well as more precise sensor models.

For judging the quality of a DF, both NLL and tracking
error should be taken into account: While a low RMSE is
important for all tasks that use the state estimate, a good
likelihood means that the uncertainty about the state is com-
municated correctly, which enables e.g. risk-aware planning
and failure detection.

The combined loss Lnjx trades off these two objectives
during training. It does, however, not outperform the single

losses in their respective objective. A possible explanation is
that they can result in opposing gradients: All DFs tend to
overestimate the process noise when trained only on Lysg.
This lowers the tracking error by giving more weight to the
observations in dEKF, dUKF and dMCUKF and allowing
more exploration in the dPF. But it also results in a higher
uncertainty about the state, which is undesirable when opti-
mizing the likelihood.

We generally recommend using Ly, during training to
ensure learning accurate noise models. If learning the process
and sensor model does not work well, L1 can either be
combined with Lyisg or the models can be pretrained.

6.4 Training sequence length

Karkusetal. (2018) evaluated training their dPF on sequences
of length k € {1,2,4} and found that using more steps
improved results. Here, we want to test if increasing the
sequence length even further is beneficial. However, longer
training sequences also mean longer training times (or more
memory consumption). We thus aim to find a value for k with
a good trade off between training speed and model perfor-
mance.

Experiment
We evaluate the DFs on a dataset with 15 distractors
and constant process noise (0q, = 0.1, o4, = 2). The

filters learn the sensor and process model as well as het-
eroscedastic observation noise and constant process noise
models. We train using LNy on sequence lengths k €
{1,2,5, 10, 25, 50} while keeping the total number of exam-
ples per batch (steps x batch size) constant.

Results

Ourresults in Fig. 3 show that all filters benefit from longer
training sequences much more than the results in Karkus et al.
(2018) indicated. However, while only one time step is clearly
too little, returns diminish after around ten steps.

Why are longer training sequences helpful? One issue with
short sequences is that we use noisy initial states during train-
ing. This reflects real-world conditions, but the noisy inputs
hinder learning the process model. On longer sequences, the
observation updates can improve the state estimate and thus
provide more accurate input values.

We repeated the experiment without perturbing the ini-
tial state, but the results with k € {1, 2} got even worse:
Since the DFs could now learn accurate process models, they
did not need the observations to achieve a low training loss
and thus did not learn a proper sensor model. On the longer
test sequences, however, even small errors from the noisy
dynamics accumulate over time if they are not corrected by
the observations.

To summarize, longer sequences are beneficial for training
DFs, because they demonstrate error accumulation during
filtering and allow for convergence of the state estimate

@ Springer

Autonomous Robots

tracking RMSE
! !

obseryation RMSE

-log likelihood
| |

15 15 ‘ ‘ 30
10 10 20
5 5 10
0 0 0

QF quRE ousE e

BoLyvise DO Lonix

Fig.2 Results on disc tracking: performance of the DFs when trained
with different loss functions Lysg, LNLL Or Lmix averaged over all
steps in the trajectory. The first plot shows the RSME of the estimated
state while the second shows the difference between the output of the

QXY qURY (UK gpE M

20

RMSE
=
o

o

1 2 5 10 25 50

training sequence length

Qs quE ousE e

D D LNLL
sensor network and the corresponding ground truth state components.

The negative log likelihood is computed as shown in Eqs. 2 or 3 for the
dPF-M (Color figure online)

N
o

-log likelihood
=
S

1 2 5 10 25 50
training sequence length

lpdekr Oodukr [odMcUKF [DBdPF-M

Fig.3 Results on disc tracking: performance of the DFs trained with different sequence lengths. The cut-off NLL values for sequence length 1 are

47.443.9 for the dUKF and 79.0+ 2.7 for the dPF-M (Color figure online)

when the initial state is noisy. However, performance even-
tually saturates and increasing k also increased our training
times. We therefore chose k = 10 for all experiments, which
provides a good trade-off between training speed and perfor-
mance.

6.5 Learning noise models

The following experiments analyze how well complex mod-
els of the process and observation noise can be learned
through the filters and how much this improves the filter
performance. To isolate the effect of the noise models, we
use a fixed, pretrained sensor model and the true analytical
process model, such that only the noise models are trained.
We initialize Q and R with Q = I and R = 100I,. All DFs
are trained on LnpL.

Online Material 1 contains extended experimental results
on additional datasets as well as data for the dPF-G.

6.5.1 Heteroscedastic observation noise
We first test if learning more complex, heteroscedastic obser-

vation noise models improves the performance of the filters
as compared to learning constant noise models. For this, we

@ Springer

compare DFs that learn constant or heteroscedastic observa-
tion noise (the process noise is constant) on a dataset with
constant process noise (o4, = 3, 04, = 2) and 30 distractors.

To measure how well the predicted observation noise
reflects the visibility of the target disc, we compute the corre-
lation coefficient between the predicted R and the number of
visible target pixels. We also evaluate the similarity between
the learned and the true process noise model using the Bhat-
tacharyya distance.

Results

Results are shown in Table 1. When learning constant
observation noise, all DFs perform relatively bad in terms
of the tracking error. Upon inspection, we find that all fil-
ters learn a very high R and thus mostly rely on the process
model for their prediction. For example, the dEKF predicts
or, = 25.4. This is expected, since trusting the observations
would result in wrong updates to the mean state estimate
when the target disc is occluded.

Like Haarnoja et al. (2016), we find that heteroscedastic
observation noise significantly improves the tracking perfor-
mance of all DFs (except for the dPF-M). The strong negative
correlation between R and the visible disc pixels shows that
the DFs correctly predict higher uncertainty when the target
is occluded. For example, the dEKF predicts values as low

Autonomous Robots

Table 1 Results for disc tracking: end-to-end learning of the noise
models through the DFs on datasets with 30 distractors and different
levels of process noise

R RMSE NLL Corr. Dq
dEKF Const. 16.2 14.0 - 0.121
Hetero. 8.8 10.7 —0.78 0.002
dUKF Const. 16.8 14.1 - 0.161
Hetero. 8.8 10.7 —0.78 0.013
dMCUKF Const. 16.7 14.1 - 0.152
Hetero. 9.0 10.9 —0.78 0.006
dPF-M Const. 16.1 34.3 - 0.435
Hetero. 9.6 20.8 —0.77 0.280

While Q is always constant, we evaluate learning constant (const.) or
heteroscedastic (hetero) observation noise R. We show the tracking
error (RMSE), negative log likelihood (NLL), the correlation coefficient
between predicted R and the number of visible pixels of the target disc
(corr.) and the Bhattacharyya distance between true and learned process
noise model (Dq). The best results per DF are highlighted in bold

as oy, = 0.9 when the disc is perfectly visible and as high as
or, = 29.3 when it is fully occluded.

Finally, all DFs learn values of Q that are close to
the ground truth. For dEKF, dUKF and dMCUKEF, the
results improve significantly when heteroscedastic observa-
tion noise is learned. This could be because the worse track-
ing performance with constant observation noise impedes
learning an accurate process model and thus requires higher
process noise.

6.5.2 Heteroscedastic process noise

The effect of learning heteroscedastic process noise has not
yet been evaluated in related work. We create datasets with
heteroscedastic ground truth process noise, where the mag-
nitude of q, increases in three steps the closer to the origin
the disc is. The positional process noise q, remains constant
(0g, = 3.0).

We compare the performance of DFs that learn constant
and heteroscedastic process noise while the observation noise
is heteroscedastic in all cases.

Results

As shown in Table 2, learning heteroscedastic models of
the process noise is a bit more difficult than for the obser-
vation noise. This is not surprising, as the input values for
predicting the process noise are the noisy state estimates.

Plotting the predicted values for Q (see Fig. 4 for an exam-
ple from the dEKF) reveals that all DFs learn to follow the
real values for the heteroscedastic velocity noise relatively
well, but also predict state dependent values for q,, which
is actually constant. This could mean that the models have

difficulties distinguishing between q, and q, as sources of
uncertainty about the disc position. However, we see the same
behavior also on a dataset with constant ground truth process
noise. We thus assume that the models rather pick up an unin-
tentional pattern in our data: The probability of the disc being
occluded turned out to be higher in the middle of the image.
The filters react to this by overestimating q, in the center,
which results in an overall higher uncertainty about the state
in regions where occlusions are more likely.

Despite not being completely accurate, learning het-
eroscedastic noise models still increases performance of all
DFs by a small but reliable value. Even when the ground-
truth process noise model is constant, most of the DFs were
able to improve their RSME and likelihood scores slightly
by learning “wrong” heteroscedastic noise models.

6.5.3 Correlated noise

So far, we have only considered noise models with diagonal
covariance matrices. In this experiment, we want to see if DFs
can learn to identify correlations in the noise. We compare the
performance of DFs that learn noise models with diagonal or
full covariance matrix on datasets with and without correlated
process noise. Both the learned process and the observation
noise model are also heteroscedastic.

The results (see Online Material 1, Sec. B.3.3) show that
learning correlated noise models leads to a further small
improvement of the performance of all DFs when the true
process noise is correlated. However, uncovering correlations
in the noise seems to be even more difficult than learning
accurate heteroscedastic noise models, as indicated by the
still high Bhattacharyya distance between true and learned

Q.
6.6 Benchmarking

In the final experiment on this task, we compare the per-
formance of the DFs among each other and to two LSTM
models. We use an LSTM architecture similar to Jon-
schkowski et al. (2018), with one or two layers of LSTM
cells (512 units each). The LSTM state is decoded into mean
and covariance of a Gaussian state estimate.
Experiment All models are trained for 30 epochs. The DFs
learn the sensor and process models with heteroscedastic,
diagonal noise models. We compare their performance on
datasets with 30 distractors and different levels of con-
stant or heteroscedastic process noise. Each experiment is
repeated two times to account for different initializations of
the weights.
Results

The results in Table 3 show that all models (except for the
dPF-G, see Online Material 1, Table S7) learn to track the
target disc well and make reasonable uncertainty predictions.

@ Springer

Autonomous Robots

Table 2 Results on disc tracking: end-to-end learning of constant or heteroscedastic process noise Q on datasets with 30 distractors and het-

eroscedastic or constant (o4, = 3.0, 04, = 2.0) process noise

Heteroscedastic noise

Constant noise

Q RMSE NLL Dq RMSE NLL Dq
dEKF Const. 8.09 11.620 0.879 8.80 10.687 0.002
Hetero. 7.36 11.289 0.402 8.77 10.684 0.033
dUKF Const. 7.85 11.318 0.874 8.80 10.743 0.013
Hetero. 7.60 11.167 0.391 8.68 10.727 0.030
dMCUKF const. 8.13 11.493 0.891 8.98 10.898 0.006
Hetero. 7.45 11.321 0.464 8.73 10.739 0.044
dPF-M Const. 8.48 15.232 1.072 9.61 20.789 0.280
Hetero. 8.23 14.725 0.787 9.76 19.833 0.413

D is the Bhattacharyya distance between true and learned process noise. The best results per DF are highlighted in bold

04 position

o4 velocity

| | | |
37 41 45 49

17 21 25 29 33

predicted x predicted y

Fig. 4 Predicted and true process noise from the dEKF over one test
sequence of the disc tracking task. Our model predicts separate values
for the x and y-coordinates of position and velocity, but the ground truth
process noise has the same o for both coordinates (Color figure online)

In terms of tracking error, the dPF with learned observation
update performs best on all evaluated datasets. This, how-
ever, often does not extend to the likelihood scores. For the

NLL, the dIMCUKF instead mostly achieves the best results,
however, not with a significant advantage over the other DFs.

If we exclude the dPF variant with learned observation
model (which is more expressive than the other DFs), we
can see that the choice of the underlying filtering algorithm
does not make a big difference for the performance on this
task. The unstructured LSTM model, in contrast, requires two
layers of LSTM cells (each with 512 units per layer) to reach
the performance of the DFs. Unstructured models like LSTM
can thus learn to perform similar to differentiable filters, but
require a much higher number of trainable parameters than
the DFs which increases computational demands and the risk
of overfitting.

7 KITTI visual odometry

As a first real-world application we study the KITTI Visual
Odometry problem (Geiger et al. 2012) that was also evalu-
ated by Haarnoja et al. (2016) and Jonschkowski et al. (2018).
The task is to estimate the position and orientation of a driv-

Table 3 Results on disc tracking: comparison between the DFs and LSTM models with one or two LSTM layers on two different datasets with 30

distractors and constant process noise with increasing magnitude

gy, = 3.0 ag, = 9.0
RMSE NLL RMSE NLL

dEKF 6.3140.12 9.240.10 11.83+0.28 11.1040.20
dUKF 6.4620.20 9.26£0.26 11.49+0.18 10.75+0.16
dMCUKF 6.53+0.18 9.23+0.17 11.5940.10 10.81:£0.11
dPF-M 6.7540.07 12.3340.09 11.520.07 20.50+0.36
dPF-M-Irn 5.89+0.15 11.4340.15 9.98+0.13 19.1740.18
LSTM-1 9.440.77 10.6440.25 14.620.70 11.8340.22
LSTM-2 7.13+0.86 9.76:£0.56 13.9540.51 11.9340.07

Each experiment is repeated two times and we report mean and standard errors

@ Springer

Autonomous Robots

ing car given a sequence of RGB images from a front facing
camera and the true initial state.

The state is 5-dimensional and includes the position p
and orientation 6 of the car as well as the current linear and
angular velocity v and 6. The real control input u = (1') é)T
is unknown and we thus treat changes in v and 6 as results
of the process noise. The position and heading estimate can
be updated analytically by Euler integration.

While the dynamics model is simple, the challenge in
this task comes from the unknown actions and the fact that
the absolute position and orientation of the car cannot be
observed from the RGB images. At each timestep, the fil-
ters receive the current images as well as a difference image
between the current and previous timestep. From this, the
filters can estimate the angular and linear velocity to update
the state, but the uncertainty about the absolute position and
heading will inevitably grow due to missing feedback. Please
refer to Online Material 1, Sec. C.1 for details on the imple-
mentation of the sensor network, the learned process model
and the learned noise models.

7.1 Data

The KITTI Visual Odometry dataset consists of eleven tra-
jectories of varying length (from 270 to over 4500 steps) with
ground truth annotations for position and heading and image
sequences from two different cameras collected at 10 Hz.

Following Haarnoja et al. (2016) and Jonschkowski et al.
(2018), we build eleven different datasets. Each of the origi-
nal trajectories is used as the test split of one dataset, while
the remaining 10 sequences are used to construct the training
and validation split.

To augment the data, we use the images from both cam-
eras for each trajectory and also mirror the sequences. For
training and validation, we extract 200 sequences of length
50 with different random starting points from each aug-
mented trajectory. This results in 1013 training and 287
validation sequences. For testing, we extract sequences of
length 100 from the augmented test-trajectory. The number
of test sequences depends on the overall length of the test-
trajectory.

When looking at the statistics of the eleven trajectories in
the original KITTI dataset, Trajectory 1 can be identified as
an outlier: It shows driving on a highway, where the velocity
of the car is much higher than in all the other trajectories.
As aresult, the sensor models trained on the other sequences
will yield bad results when evaluated on Trajectory 1. We
will therefore mostly report results for only a ten-fold cross-
validation that excludes the dataset for testing on Trajectory
1. We will refer to this as KITTI-10 while the full, eleven-
fold cross validation will be denoted as KITTI-11.1In Sec. 7.4,
results for both settings are reported, such that the influence
of Trajectory 1 becomes visible.

7.2 Learning noise models

In this experiment, we want to test how much the DFs profit
from learning the process and observation noise models end-
to-end through the filters, as compared to using hand-tuned
or individually learned noise models.

We also again compare learning constant or heteroscedas-
tic noise models. In contrast to the previous task, we do
not expect as large a difference between constant or het-
eroscedastic observation noise for this task, as the visual
input does not contain occlusions or other events that would
drastically change the quality of the predicted observations
Z.

Experiment

As in the experiments on simulated data (Sec. 6.5), we use
a fixed, pretrained sensor model and the analytical process
model, and only train the noise models. We initialize Q and
R with Q = Is and R = I,. All DFs are trained with Lnpt
and a sequence length of 25, which we found to be beneficial
for learning the noise models in a preliminary experiment.

We compare the DFs when learning different combina-
tions of constant or heteroscedastic process and observation
noise. As on baseline, we use DFs with fixed constant noise
models that reflect the average validation error of the pre-
trained sensor model and the analytical process model. A
second baseline fixes the noise models to those obtained by
individual pretraining, where we evaluate both constant and
heteroscedastic models. All DFs are evaluated on KITTI-10.
Results

The results in Table 4 show that learning the noise mod-
els end-to-end through the filters greatly improves the NLL
but has no big effect on the tracking errors for this task. The
DFs with the hand-tuned, constant noise model have the by
far worst NLL because they greatly underestimate the uncer-
tainty about the vehicle pose. The DFs that use individually
trained noise models perform better, but are still overly con-
fident.

For most of the DFs, we achieve the best results when
learning constant observation and heteroscedastic process
noise. The worst results are achieved when instead the obser-
vation noise is heteroscedastic and the process noise constant.
This could indicate that the true process noise can be better
modeled by a state-dependent noise model while learning
heteroscedastic observation noise leads to overfitting to the
training data. However, the differences are overall not very
pronounced.

Finally, we also evaluated the DFs with full covariance
matrices for the noise models. For the setting with con-
stant observation and heteroscedastic process noise, using
full instead of diagonal covariance matrices barely had any
effect on the tracking error and only slightly improved the
NLL (e.g. from 27.1£5.0 to 26.5+4.6 for the dEKF).

@ Springer

Autonomous Robots

Table 4 Results on KITTI-10: performance of the DFs with different noise models (mean and standard error)

Hand-tuned R, Q. Pretrained R, Q. Pretrained R, Qp, R.Q. R.Qy R, Q. R, Qy
RMSE dEKF 9.67+0.8 9.65+0.8 10.53+1.0 9.70+0.8 9.69+0.8 9.74+0.8 9.68+0.8
dUKF 9.7340.7 9.71+0.8 10.68+1.0 9.71+0.8 9.71+0.8 9.81£0.8 9.724+0.8
dMCUKF 9.73+0.7 9.71+£0.8 10.68+1.0 9.714+0.8 9.70+0.8 9.80+0.8 9.68+0.8
dPF-M 11.7940.5 10.1840.7 10.66+0.9 9.724+0.8 9.74+0.8 9.74+0.8 9.774+0.8
NLL dEKF 304.44+43.8 139.6+16.7 107.7+15.6 39.5+4.0 38.9£5.0 40.74+3.7 38.0+4.6
dUKF 305.94+43.7 140.0+16.6 108.1+15.5 40.54+4.0 39.245.1 41.3£4.0 40.1+£5.4
dMCUKF 306.0+43.8 140.0+16.6 108.2+15.5 33.9+3.2 29.8+3.5 33.3+£3.2 30.3+3.7
dPF-M 103.2+6.4 75.8+8.5 71.1+6.5 74.7£9.9 71.4+10.1 74.2+10.1 72.4+9.7

Hand-tuned and Pretrained use fixed noise models whereas for the other variants, the noise models are trained end-to-end through the DFs. R,
indicates a constant observation noise model and R, a heteroscedastic one (same for Q). The best results per DF are highlighted in bold

7.3 End-to-end versus individual training

Previous work (Jonschkowski et al. 2018) has shown that
end-to-end training through differentiable filters leads to bet-
ter results than running the DFs with models that were trained
individually. Specifically, pretraining the models individu-
ally and finetuning end-to-end resulted in the best tracking
performance. As a possible explanation, the authors found
that the individually trained process noise model predicted
noise close to the ground truth whereas the end-to-end trained
model overestimated to noise, which is believed to be bene-
ficial for filter performance.

Does this mean that end-to-end training through DFs
mostly affects the noise models? To test this, we pretrain
all models individually and compare the performance of the
DFs without finetuning, when finetuning only the noise mod-
els or only the sensor and process model and when finetuning
everything. We also report results for training the DFs from
scratch.

Experiment

We pretrain sensor and process model and their asso-
ciated (constant) noise models individually for 30 epochs.
For finetuning, we load the pretrained models and fine-
tune the desired parts for 10 epochs, while the end-
to-end trained versions are trained for 30 epochs. All
variants are evaluated using KITTI-10 and trained using
LniL.

Results

The results shown in Table 5 support our hypothesis
that end-to-end training through the DFs is most impor-
tant for learning the noise models: Finetuning only the
noise models improved both RMSE and NLL of all DFs
in comparison to the variants without finetuning or with
finetuning only the sensor and process model (except for
the dMCUKEF). For dEKF and dPF, finetuning the sensor
and process model even decreased the performance on both
measures.

In terms of tracking error, individual pretraining plus fine-
tuning the noise models lead to the best results on dEKF and
dPF, while dUKF and dMCUKEF performed slightly better
when finetuning both sensor and process model and their

Table 5 Results on KITTI-10: RMSE and negative log likelihood for the DFs with different training schemes (mean and standard error)

Individual Finetune models Finetune noise Finetune all From scratch
RMSE dEKF 9.58+0.7 10.38+1.0 9.54+0.7 9.83+0.8 10.05+0.8
dUKF 9.64+0.7 9.66340.8 9.57+0.7 9.33+0.8 9.29+0.6
dMCUKF 9.64+0.7 9.53+0.8 9.58+0.7 9.35+0.7 9.724+0.6
dPF-M 10.29+0.6 10.86+0.8 9.59+0.6 10.094+0.9 10.20+0.9
NLL dEKF 130.0£16.3 160.0£28.8 51.3+5.1 57.7+5.2 61.8+7.7
dUKF 126.7£15.6 118.4+14.5 57.3+5.5 87.1+9.9 59.3+7.2
dMCUKF 127.9£15.9 117.8£14.8 50.0+4.6 74.4+8.1 50.3+8.1
dPF-M 76.9+7.6 86.3+11.3 72.6+9.4 80.9+£12.2 82.4+12.2

We compare individually trained process, sensor and noise models against finetuning only the sensor and process models, finetuning only the noise
models and finteuning all models through the DFs. We also report results for DFs trained from scratch without individual pretraining. The best

results per DF are marked in bold

@ Springer

Autonomous Robots

noise models (AIMCUKEF) or even learning both from scratch
(dUKEF). For the NLL, finetuning only the noise models lead
to the best results for all DFs, followed in most cases by
training from scratch.

To summarize, the results indicate that individual pretrain-
ing is helpful for learning the sensor and process models, but
not for the noise models. End-to-end training through the
DFs, on the other hand, again proved to be important for
optimizing the noise models for the respective filtering algo-
rithm but did not offer advantages for learning the sensor and
process model.

7.4 Benchmarking

In the final experiment on this task, we compare the perfor-
mance of the DFs to an LSTM model. We again use an LSTM
architecture similar to Jonschkowski et al. (2018), but with
only one layer of LSTM cells with 256 units. The LSTM state
is decoded into an update for the mean and the covariance
of a Gaussian state estimate. Like the process model of the
DFs, the LSTM does not get the full initial state as input, but
only those components that are necessary for computing a
state update (velocities and sine and cosine of the heading).
We chose this architecture in an attempt to make the learning
task easier for the LSTM.
Experiment

All models are trained for 30 epochs using Ly, except
for the LSTM, for which Lyx lead to better results. The
DFs learn the sensor and process models with constant noise

models. We report their performance on KITTI-10 and KITTI-
11, for comparison with prior work.
Results

The results in Table 6 show that by training all the models
in the DFs from scratch, we can reach a performance that
is competitive with prior work by Haarnoja et al. (2016),
despite not relying on an analytical process model. We were,
however, not able to reach the very good performance of
the dPF reported by Jonschkowski et al. (2018). A possible
cause for this could be that the normalization of the particles
in the learned observation update used by Jonschkowski et al.
(2018) helps the method to better deal with the higher overall
velocity in Trajectory 1 of the KITTI dataset.

In contrast to the DF, we were not able to train LSTM mod-
els that reached a good evaluation performance on this task,
despite trying multiple different architectures and loss func-
tions. Different from the experiments on the simulation task,
increasing the number of units per LSTM-layer or using mul-
tiple LSTM layers even decreased the performance here. To
complement our results, we also report an LSTM result from
Haarnoja et al. (2016) that does better on the position error
but worse on the orientation error. While these findings do
not mean that a better performance could not be reached with
unstructured models given different architectures or training
routines, it still shows that the added structure of the filter-
ing algorithms greatly facilitates learning in more complex
problems.

For this task, the dPF-M-Irn again achieves the overall
best tracking result, closely followed by the dUKF which

Table 6 Results on KITTI: comparison between the DFs and LSTM (mean and standard error)

RMSE NLL n &g
KITTI-11 dEKF 15.8+5.8 338.84277.1 0.24£0.04 0.080£0.005
dUKF 14.9+5.7 326.7+267.5 0.21+0.04 0.079+0.008
dMCUKF 15.245.5 266.3%216.1 0.23£0.04 0.08340.012
dPE-M 16.3%6.1 115.2434.6 0.24£0.04 0.078 + 0.006
dPE-M-Irn 143+52 94.2+333 0.22:£0.04 0.088£0.013
LSTM 25.745.7 3970.642227.4 0.55+0.05 0.081£0.008
LSTM* - - 0.26 0.29
BKF* - - 0.21 0.08
DPF* - - 0.15£0.015 0.06:£0.009
KITTI-10 dEKF 10.1£0.8 61.8+7.7 0.21£0.03 0.07940.006
dUKF 9.3+0.6 59.3+7.2 0.18 £ 0.02 0.080+0.008
dMCUKF 9.740.6 50.3+8.1 0.2 £0.03 0.082+0.013
dPE-M 10.240.9 82.4£12.2 0.21£0.02 0.077 £ 0.007
dPF-M-Irn 92407 61.3£6.1 0.19:£0.03 0.09040.014
LSTM 20.242.0 1764.64340.4 0.54£0.06 0.079+0.008

Numbers for prior work BKF*, LSTM* taken from Haarnoja et al. (2016) and DPF* taken from Jonschkowski et al. (2018). BKF* and DPF* use a
fixed analytical process model while our DFs learn both, sensor and process model. i+ and d% denote the translation and rotation error at the final

step of the sequence divided by the overall distance traveled

@ Springer

Autonomous Robots

reaches the lowest normalized endpoint position error (I).
One reason for the comparably bad performance of the dEKF
could be that the dynamics of the Visual Odometry task are
more strongly non-linear than in the previous experiments.
Both UKF and PF can convey the uncertainty more faithfully
in this case, which could lead to better overall results when
training on Lnrr. Given the relatively large standard errors,
the differences between the DFs are, however, not significant.

8 Planar pushing

In the KITTT Visual Odometry problem, the main challenges
were the unknown actions and dealing with the inevitably
increasing uncertainty about the vehicle pose. With pla-
nar pushing, our second real-robot experiment in contrast
addresses a task with much more complex dynamics. Apart
from having non-linear and discontinuous dynamics (when
the pusher makes or breaks contact with the object), Bauza
and Rodriguez (2017) also showed that the noise in the sys-
tem can be best captured by a heteroscedastic noise model.

With 10 dimensions, the state representation we use is also
much larger than in our previous experiments. X contains the
2D position p, and orientation 6 of the object, as well as
the two friction-related parameters [and «,, . In addition, we
include the 2D contact point between pusher and object r,
the normal to the object’s surface at the contact point n and
a contact indicator s. The control input u contains the start
position p,, and movement v, of the pusher.

An additional challenge of this task is that r and n are
only properly defined and observable when the pusher is in
contact with the object. We thus set the labels for n to zeros
and r = p,, for non-contact cases.

Dynamics

We use an analytical model by Lynch et al. (1992) to pre-
dict the linear and angular velocity of the object (v,,) given
the previous state and the pusher motion v,,. However, pre-
dicting the next r, n and s is not possible with this model
since this would require access to a representation of the
object shape.

For r, we thus use a simple heuristic that predicts the next
contact point as r;+1 = r; + v, ;. n and s are only updated
when the angle between pusher movement and (inwards fac-
ing) normal is greater than 90°. In this case, we assume that
the pusher moves away from the object and set ;41 and n;
to zeros.

Observations

Our sensor network receives simulated RGBXYZ images
as input and outputs the pose of the object, the contact point
and normal as well as whether the push will be in contact
with the object during the push or not.

Apart from from the latent parameters / and «,,, the ori-
entation of the object, 6, is the only state component that

@ Springer

cannot be observed directly. Estimating the orientation of an
object from a single image would require a predefined “zero-
orientation” for each object, which is impractical. Instead, we
train the sensor network to predict the orientation relative to
the object pose in the initial image of each pushing sequence.

8.1 Data

We use the data from the MIT Push dataset (Yu et al. 2016)
as a basis for constructing our datasets. Further annotations
for contact points and normals as well as rendered images
are obtained using the tools described by Kloss et al. (2020).
However, in contrast to Kloss et al. (2020), the images we
use here also show the robot arm and are taken from a more
realistic view-point. As aresult, the robot frequently occludes
parts of the object, but complete occlusions are rare. Figure 5
shows example views.

We use pushes with a velocity of 50 "5 and render images
with a frequency of 5Hz. This results in short sequences of
about five images for each push in the original dataset. We
extend them to 20 steps for training and validation and 50
steps for testing by chaining multiple pushes and adding in-
between pusher movement when necessary. The resulting
dataset contains 5515 sequences for training, 624 validation
sequences and 751 sequences for testing.

8.2 Learning noise models

In this experiment, we again evaluate how much the DFs
profit from learning the process and observation noise mod-
els end-to-end through the filters. In contrast to the KITTI
task, for pushing, we expect both heteroscedastic observation
and process noise to be advantageous, since the visual obser-
vations feature at least partial occlusions and the dynamics
of pushing have been previously shown to exhibit heteros-
tochasticity (Bauza and Rodriguez 2017).

To test this hypothesis, we compare DFs that learn constant
or heteroscedastic noise models to DFs with hand-tuned, con-
stant noise models that reflect the average test error of the
pretrained sensor model and the analytical process model.
Experiment As in the corresponding experiments on the pre-
vious tasks (Sec. 6.5 and Sec. 7.2), we use a fixed, pretrained

Fig.5 Examples of the rendered RGB images that we use as observa-
tions for the pushing task. The last example shows that the robot arm
can partially occlude the object in some positions (Color figure online)

Autonomous Robots

Table 7 Results for planar pushing: translation (tr) and rotation (rot) error and negative log likelihood for the DFs with different noise models

Hand-tuned R.Q, R.Q. R, Q. R.Qp R, Qp
tr [mm)] dEKF 6.22 4.45 4.61 4.44 4.38
dUKF 4.87 4.44 5.25 443 4.45
dMCUKF 4.73 4.42 4.8 4.39 4.35
dPF-M 18.13 5.07 4.92 5.32 4.64
rot [°] dEKF 10.49 10.00 9.71 10.15 9.97
dUKF 9.87 9.91 9.73 10.05 10.00
dMCUKF 9.78 9.95 9.93 10.04 9.85
dPF-M 16.18 10.18 9.92 10.39 10.06
NLL dEKF 265.17 126.69 33.09 79.24 26.48
dUKF 378.08 84.12 33.06 81.55 27.61
dMCUKF 130.22 78.53 30.43 64.12 30.1
dPF-M 353.25 128.15 104.40 103.21 82.46

The hand-tuned DFs use fixed noise models whereas for the other variants, the noise models are trained end-to-end through the DFs. R, indicates
a constant observation noise model and R, a heteroscedastic one (same for Q). The best result per DF are highlighted in bold

sensor model and the analytical process model, and only train
the noise models. All DFs are trained for 15 epochs on LN L.
Results The results shown in Table 7 again demonstrate that
learning the noise models end-to-end through the structure
of the filtering algorithms is beneficial. With learned models,
all DFs reach much better likelihood scores than with the
hand-tuned variants. For the dEKF and especially the dPF,
the tracking performance also improves significantly.

Comparing the results between constant and heteroscedas-
tic noise models also confirms our hypothesis that for the
pushing task, heteroscedastic noise models are beneficial for
both observation and process noise. While all DFs reach the
best NLL when both noise models are state-dependent, the
effect on the tracking error is, however, less clear.

For dEKF, dUKF and dMCUKEF, learning a heteroscedas-
tic observation noise model leads to a much bigger improve-
ment of the NLL than learning heteroscedastic process
noise. Similar to the simulated disc tracking task, the input
dependent noise model allows the DFs to better deal with
occlusions in the observations, which again reflects in a neg-
ative correlation between the number of visible object pixels
and the predicted positional observation noise.

8.3 Benchmarking

In the final experiment, we compare the performance of the
DFs to an LSTM model on the pushing task. As before, we use
amodel with one LSTM layer with 256 units. The LSTM state
is decoded into an update for the mean and the covariance of
a Gaussian state estimate.

Experiment All models are trained for 30 epochs using L.
As initial experiments showed that learning sensor and pro-
cess model jointly from scratch is very difficult for this task

due to the more complex architectures, we pretrain both mod-
els. The sensor and process models are finetuned through the
DFs and they learn heteroscedastic noise models. The LSTM,
too, uses the pretrained sensor model, but not the process
model.

Results As shown in Table 8, even with a learned process
model, all DFs (except for the dPF-M-Irn) perform at least
similar to their pendants in the previous experiment where
we used the analytical process model. dEKF, dUKF and
dMCUKEF even reach a higher tracking performance than
before. As noted by Kloss et al. (2020), this can be explained
by the quasi-static assumption of the analytical model being
violated for push velocities above 20 ==.

The LSTM model, again, does not reach the performance
of the DFs. One disadvantage of the LSTM here is that in
contrast to the DFs, we cannot isolate and pretrain the pro-
cess model. In contrast to the previous tasks, the dPF variant
with the learned likelihood function, however, performs even
worse than the LSTM for planar pushing. This is likely due
to the complex sensor model and the high-dimensional state
that make learning the observation likelihood much more
challenging.

9 Conclusions

Our experiments show that all evaluated DFs are well suited
for learning both sensor and process model, and the asso-
ciated noise models. For simpler tasks like the simulated
tracking task and the KITTI Visual Odometry problem, all
of these models can be learned end-to-end. Only the push-
ing problem with its large state and complex dynamics and
sensor model requires pretraining to achieve good results.

@ Springer

Autonomous Robots

Table 8 Results on pushing: comparison between the DFs and LSTM. Process and sensor model are pretrained and get finetuned end-to-end

RMSE NLL tr [mm)] rot [°]
dEKF 14.940.46 33.9+3.86 3.5+0.02 8.8+0.22
dUKF 13.7 £ 0.15 31.1£1.90 3.7+0.06 8.81+0.14
dMCUKF 13.8£0.10 34.1+£3.57 3.7+0.06 8.8 +0.06
dPF-M 18.3£0.38 120.44+5.70 5.7+0.16 10.54+0.36
dPF-M-Irn 29.0+0.73 486.0+3.27 12.0+£0.78 18.940.04
LSTM 27.36£0.2 35.4+0.24 8.8+0.17 19.040.001

The DFs learn heteroscedastic noise models. Each experiment is repeated three times and we report mean and standard errors

In comparison to unstructured LSTM models, the DFs
generally use fewer weights and achieve better results, espe-
cially on complex tasks. While training better LSTM models
might be possible for more experienced LSTM users, using
the algorithmic structure of the filtering algorithms definitely
facilitated the learning problem and thus made it much eas-
ier to reach good performance with the DFs. In addition, the
structure of DFs allows us to pretrain components such as the
process model that are not explicitly accessible in LSTMs.

The direct comparison between DFs with different under-
lying filtering algorithms showed no clear winner. Only the
dPF with learned observation update performed notably bet-
ter than the other variants on the simulated example task and
was least affected by the outlier-trajectory of the KITTI-task.
This variant relaxes some of the assumptions that the filter-
ing algorithms encode by not relying on an explicit sensor or
observation noise model. Its good performance thus shows
that the priors enforced by the algorithm choice can also be
harmful if they do not hold in practice, such as the Gaussian
noise assumption.

Our experiments suggest that for learning the sensor and
process model, end-to-end training through the filters is con-
venient, but provides no advantages over training the models
individually. End-to-end training, however, proved to be
essential for optimizing the noise models for their respective
filtering algorithm. In contrast to end-to-end trained models,
both hand-tuned and individually trained noise models did
not result in optimal performance of the DFs. Training noise
models through DFs also enables learning more complex
noise models than the ones used in learning-free, hand-tuned
filters. We demonstrate that noise models with full (instead of
diagonal) covariance matrices and especially heteroscedastic
noise model, can significantly improve the tracking accuracy
and uncertainty estimates of DFs.

The main challenge in working with differentiable filters
is keeping the training stable and finding good choices for
the numerous hyper-parameters and implementation options
of the filters. While we hope that this work provides some
orientation about which parameters matter and how to set
them, we still recommend using the dEKF for getting started
with differentiable filters. It is not only the most simple of the
DFs we evaluated, but it also proved to be relatively insen-

@ Springer

sitive to sub-optimal initialization of the noise models and
was the most numerically stable during training. On the other
hand, for tasks with strongly non-linear dynamics, the dUKF,
dMCUKEF or dPF can, however, ultimately achieve a better
tracking performance.

One interesting direction for future research that we have
not attempted here is to optimize parameters of the filtering
algorithms, such as the scaling parameters of the dUKF or
the fixed covariance of the mixture model components in the
dPF-M, by end-to-end training. It could also be interesting
to implement DFs with other underlying filtering algorithms.
For example, the pushing task could potentially be better
handled by a Switching Kalman filter (Murphy 1998) that
explicitly treats the contact state as a binary decision vari-
able. In addition, all of our DFs perform badly on the outlier
trajectory of the KITTI dataset which features a much higher
driving velocity than the other trajectories we used for train-
ing the model. This shows that the ability to detect input
values outside of the training distribution would be a valu-
able addition to current DFs. Finally, it would be interesting
to compare learning in DFs to similar variational methods
such as the ones introduced by Karl et al. (2017); Fraccaro
et al. (2017); Le et al. (2018) or the model-free PF-RNNs
introduced by Ma et al. (2020).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-09990-
9.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

https://doi.org/10.1007/s10514-021-09990-9
https://doi.org/10.1007/s10514-021-09990-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, L., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasude-
van, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., & Zheng, X. (2015) TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from ten-
sorflow.org

Amos, B., Jimenez, 1., Sacks, J., Boots, B., & Kolter, J.Z. (2018) Dif-
ferentiable mpc for end-to-end planning and control. In Advances
in neural information processing systems, Curran Associates, Inc.,
pp- 8289-8300

Archer, E., Park, .M., Buesing, L., Cunningham, J., & Paninski, L.
(2015) Black box variational inference for state space models.
arXiv preprint arXiv:1511.07367.

Bauza, M., & Rodriguez, A. (2017) A probabilistic data-driven model
for planar pushing. In IEEE international conference on robotics
and automation (pp. 3008-3015). https://doi.org/10.1109/ICRA.
2017.7989345.

Bavdekar, V. A., Deshpande, A. P., & Patwardhan, S. C. (2011). Identi-
fication of process and measurement noise covariance for state and
parameter estimation using extended kalman filter. Journal of Pro-
cess Control, 21(4), 585-601. https://doi.org/10.1016/j.jprocont.
2011.01.001.

Donti, P., Amos, B., & Kolter, J.Z. (2017). Task-based end-to-end model
learning in stochastic optimization. In Advances in neural informa-
tion processing systems, Curran Associates, Inc., pp. 5484-5494.

Farquhar, G., Rocktaeschel, T., Igl, M., & Whiteson, S. (2018). TreeQN
and ATreec: Differentiable tree planning for deep reinforcement
learning. In International conference on learning representations.

Fraccaro, M., Kamronn, S., Paquet, U., & Winther, O. (2017) A
disentangled recognition and nonlinear dynamics model for unsu-
pervised learning. In Advances in neural information processing
systems (pp. 3601-3610).

Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous
driving? The kitti vision benchmark suite. In Conference on com-
puter vision and pattern recognition.

Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda,
X. (2020) Dynamical variational autoencoders: A comprehensive
review. arXiv preprint arXiv:2008.12595.

Guez, A., Weber, T., Antonoglou, I., Simonyan, K., Vinyals, O., Wier-
stra, D., Munos, R., & Silver, D. (2018) Learning to search with
mctsnets. In International conference on machine learning, PMLR
(Vol. 80, pp. 1817-1826).

Haarnoja, T., Ajay, A., Levine, S., Abbeel, P. (2016) Backprop
KF: Learning discriminative deterministic state estimators. In
Advances in neural information processing systems (pp. 4376—
4384).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780.

Holl, P., Thuerey, N., & Koltun, V. (2020). Learning to control pdes
with differentiable physics. In International conference on learn-
ing representations.

Jonschkowski, R., & Brock, O. (2016). End-to-end learnable histogram
filters. In Workshop on deep learning for action and interaction at
NIPS.

Jonschkowski, R., Rastogi, D., & Brock, O. (2018). Differentiable
particle filters: End-to-end learning with algorithmic priors. In
Robotics: science and systems, Pittsburgh, USA.

Karkus, P., Hsu, D., & Lee, W. S. (2017). QMDP-Net: Deep learning
for planning under partial observability. In Advances in neural
information processing systems (pp. 4694-4704).

Karkus, P., Hsu, D., & Lee, W.S. (2018) Particle filter networks with
application to visual localization. In Conference on robot learning
(pp 169-178).

Karkus, P., Ma, X., Hsu, D., Kaelbling, L.P., Lee, W.S., & Lozano-Pérez,
T. (2019). Differentiable algorithm networks for composable robot
learning. In Robotics: Science and systems.

Karl, M., Soelch, M., Bayer, J., & van der Smagt, P. (2017) Deep vari-
ational bayes filters: Unsupervised learning of state space models
from raw data. In International conference on learning represen-
tations.

Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007) Most likely
heteroscedastic gaussian process regression. In International con-
ference on machine learning, ACM (pp. 393-400).

Kingma, D.P., & Ba, J. (2015) Adam: A method for stochastic optimiza-
tion. In Bengio, Y., & LeCun, Y. (eds.) International conference
on learning representations.

Kloss, A., Schaal, S., & Bohg, J. (2020). Combining learned and ana-
lytical models for predicting action effects from sensory data.
The International Journal of Robotics Research. https://doi.org/
10.1177/0278364920954896.

Krishnan, R.G., Shalit, U., & Sontag, D. (2016) Structured infer-
ence networks for nonlinear state space models. arXiv preprint
arXiv:1609.09869.

Le, T.A.,Igl, M., Rainforth, T., Jin, T., & Wood, F. (2018) Auto-encoding
sequential monte carlo. In International conference on learning
representations, https://openreview.net/forum?id=BJ8c3f-0b.

Lynch, K.M., Maekawa, H., & Tanie, K. (1992). Manipulation and
active sensing by pushing using tactile feedback. In IEEE inter-
national conference intelligent robots and systems (Vol. 1, pp.
416-421). https://doi.org/10.1109/IROS.1992.587370.

Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020). Particle filter recurrent
neural networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 34, 5101-5108.

Maddison, C.J., Lawson, D., Tucker, G., Heess, N., Norouzi, M., Mnih,
A., Doucet, A., & Teh, Y.W. (2017) Filtering variational objec-
tives. In Proceedings of the 3 1 st international conference on neural
information processing systems (pp. 6576—6586).

Murphy, K.P. (1998) Switching kalman filters.

Naesseth, C., Linderman, S., Ranganath, R., & Blei, D. (2018) Vari-
ational sequential monte carlo. In International conference on
artificial intelligence and statistics, PMLR (pp. 968-977).

Oh, J., Singh, S., & Lee, H. (2017) Value prediction network. In
Advances in neural information processing systems, Curran Asso-
ciates, Inc. (pp. 6118-6128).

Okada, M., Rigazio, L., & Aoshima, T. (2017) Path integral net-
works: End-to-end differentiable optimal control. arXiv preprint
arXiv:1706.09597.

Pereira, M., Fan, D. D., An, G. N.,& Theodorou, E. (2018) Mpc-
inspired neural network policies for sequential decision making.
arXiv preprint arXiv:1802.05803.

Pontén, B., Schaal, S., & Righetti, L. (2020) On the effects of mea-
surement uncertainty in optimal control of contact interactions. In
Algorithmic foundations of robotics XII, Springer (pp. 784-799).

Tamar, A., Wu, Y., Thomas, G., Levine, S., & Abbeel, P. (2016) Value
iteration networks. In Advances in neural information processing
systems (pp. 2154-2162).

Todorov, E. (2005). Stochastic optimal control and estimation methods
adapted to the noise characteristics of the sensorimotor system.
Neural Computation, 17(5), 1084—1108.

Valappil, J., & Georgakis, C. (2000). Systematic estimation of state
noise statistics for extended kalman filters. AIChE Journal, 46(2),
292-308.

@ Springer

http://arxiv.org/abs/1511.07367
https://doi.org/10.1109/ICRA.2017.7989345
https://doi.org/10.1109/ICRA.2017.7989345
https://doi.org/10.1016/j.jprocont.2011.01.001
https://doi.org/10.1016/j.jprocont.2011.01.001
http://arxiv.org/abs/2008.12595
https://doi.org/10.1177/0278364920954896
https://doi.org/10.1177/0278364920954896
http://arxiv.org/abs/1609.09869
https://openreview.net/forum?id=BJ8c3f-0b
https://doi.org/10.1109/IROS.1992.587370
http://arxiv.org/abs/1706.09597
http://arxiv.org/abs/1802.05803

Autonomous Robots

Watter, M., Springenberg, J., Boedecker, J., & Riedmiller, M. (2015)
Embed to control: A locally linear latent dynamics model for
control from raw images. In Advances in neural information pro-
cessing systems (pp. 2746-2754).

Yu, K.T., Bauza, M., Fazeli, N., & Rodriguez, A. (2016) More than a
million ways to be pushed. A high-fidelity experimental dataset of
planar pushing. In IEEE international conference on intelligent
robots and systems (pp. 30-37). https://doi.org/10.1109/IROS.
2016.7758091, data available from http://web.mit.edu/mcube//
push-dataset.

Zhu, M., Murphy, K., & Jonschkowski, R. (2020) Towards differentiable
resampling. arXiv preprint arXiv:2004.11938.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alina Kloss did her Ph.D. at

the International Max Planck

Research School for Intelligent

Systems (IMPRS-IS) in Tiibingen.

She received a B.Sc. degree in

bioinformatics and an M.Sc. degree
in computer science from the Uni-

versity of Tiibingen. Her research

focuses on combing traditional,

model-based approaches with deep
learning methods for vision-based

robotic manipulation.

@ Springer

Georg Martius is leading a research
group on Autonomous Learning
at the Max Planck Institute for
Intelligent Systems in T {ibingen,
Germany. Before joining the MPI
in T iibingen, he was a postdoc
fellow at the IST Austria in the
groups of Christoph Lampert and
Gasper Tkacik after being a post-
doc at the Max Planck Institute
for Mathematics in the Sciences
in Leipzig. He pursues research in
autonomous learning, that is how
an embodied agent can determine
what to learn, how to learn, and
how to judge the learning success. His research focus is on machine
learning for robotics, including internal model learning, reinforcement
learning, representation learning, differentiable reasoning and haptics.

Jeannette Bohg is an Assistant
Professor of Computer Science at
Stanford University. She was a
group leader at the Autonomous
Motion Department (AMD) of the
MPI for Intelligent Systems until
September 2017. Before joining
AMD in January 2012, Jeannette
Bohg was a PhD student at the
Division of Robotics, Perception
and Learning (RPL) at KTH in
Stockholm. In her thesis, she pro-
posed novel methods towards
multi-modal scene understanding
for robotic grasping. She also stud-
ied at Chalmers in Gothenburg and at the Technical University in
Dresden where she received her Master in Art and Technology and
her Diploma in Computer Science, respectively. Her research focuses
on perception and learning for autonomous robotic manipulation and
grasping. She is specifically interested in developing methods that are
goal-directed, real-time and multi-modal such that they can provide
meaningful feedback for execution and learning.

https://doi.org/10.1109/IROS.2016.7758091
https://doi.org/10.1109/IROS.2016.7758091
http://web.mit.edu/mcube//push-dataset
http://web.mit.edu/mcube//push-dataset
http://arxiv.org/abs/2004.11938

	How to train your differentiable filter
	Abstract
	1 Introduction
	2 Related work
	2.1 Combining learning and algorithms
	2.2 Differentiable Bayesian filters
	2.3 Variational inference

	3 Bayesian filtering for state estimation
	4 Implementation
	4.1 Differentiable filters
	4.1.1 dPF

	4.2 Observation model
	4.3 Process model
	4.4 Noise models
	4.5 Loss function

	5 Experimental setup
	6 Simulated disc tracking
	6.1 Data
	6.2 Filter implementation and parameters
	6.2.1 dUKF
	6.2.2 dMCUKF
	6.2.3 dPF: belief representation
	6.2.4 dPF: observation update
	6.2.5 dPF: resampling
	6.2.6 dPF: number of particles

	6.3 Loss function
	6.4 Training sequence length
	6.5 Learning noise models
	6.5.1 Heteroscedastic observation noise
	6.5.2 Heteroscedastic process noise
	6.5.3 Correlated noise

	6.6 Benchmarking

	7 KITTI visual odometry
	7.1 Data
	7.2 Learning noise models
	7.3 End-to-end versus individual training
	7.4 Benchmarking

	8 Planar pushing
	8.1 Data
	8.2 Learning noise models
	8.3 Benchmarking

	9 Conclusions
	References

