Collaborative Regression of Expressive Bodies using Moderation
*Supplemental Material*

Yao Feng”  Vasileios Choutas”

Timo Bolkart

Dimitrios Tzionas Michael J. Black

Max Planck Institute for Intelligent Systems, Tiibingen, Germany
{yfeng, vchoutas, tbolkart, dtzionas, black}@tuebingen.mpg.de

* Equal contribution

1. Implementation Details

Data augmentation: For training data, we use image crops
around the body, face and hands. We augment our train-
ing image crops, following mainly [1], as described below.
First, we use standard techniques, namely random horizon-
tal flipping, random image rotations, color noise addition
and random translation of the crop’s center. However this
is not enough, as there is a significant domain gap between
face-only and hand-only datasets, and the respective image
crops extracted from full-body images; the former have sig-
nificantly higher resolution. To account for this, we also
randomly down-sample and up-sample the head and hand
image crops, to simulate various lower resolutions. Finally,
inspired by [5], we add synthetic motion blur to face and
hand crops, to simulate the motion blur that is common in
full-body images. Exact augmentation parameters can be
found in our code website.

Training details: We use PyTorch [3] to implement our
pipeline. We follow a three-step training procedure: (1) We
pre-train the model with body-only, face-only and hand-
only datasets; for each dataset we train only the respec-
tive parameters. Since these datasets are captured indepen-
dently, there is no body image that corresponds to a face-
only or hand-only image. Consequently, for this step we
cannot apply feature fusion, and body-part features go di-
rectly to the respective regressor(s) (bypassing the modera-
tors), to estimate the respective body-part parameters. Simi-
lar to existing work, we train only a right hand regressor; for
images of a left hand, we flip the image horizontally to use
the right hand regressor, and mirror the predictions to get a
left hand. (2) Then, using the same data, we freeze the fea-
ture encoders and proceed with training the regressors and
extractors (see Fig. 3 of the paper the linear layers £" and
LS between the body encoder Ej and moderators M;, and
M respectively). This step encourages features F}* and
be from body images to be in the same space as features F},
and F'y from part-only images, so that regressors Ri}‘“d and

Rivsed work for both feature types. (3) Finally, we train the

full network, including the moderators M, and M ¢, but
this time using training images with full SMPL-X ground
truth, to extract part crops from full-body images as well.
However, there are two problems. First, for these images
there is no skin mask available, consequently we remove
the loss for body shape 3 and do not apply a photomet-
ric and identity loss on head crops. Second, localizing the
hands with body-driven attention is much harder compared
to the head, due to the longer kinematic chain, consequently
we freeze the hand regressor R, to avoid fine-tuning it with
invalid inputs.

All parameters are optimized using Adam [2] with a

learning rate of 0.0001. For training the body, hand and
face sub-networks, we use a batch size of 16 , 16, and 8,
respectively. The moderator is a fully connected network
with the following structure: FC (2048, 1024), ReLU, FC
(1024, 1). All input images are resized to 224 x 224 pixels
before feeding them to our network. During inference, we
extract the hand/face crops using the hand and face loca-
tions from R}’s output. Hand and face cameras are ignored
when estimating full body pose.
Global to relative pose: The regressors R'f**¢ and R}
estimate the absolute head and wrist orientation 8, i.e. irre-
spective of the (parent) main body’s pose. However, to “ap-
ply” these 6, estimates on a SMPL-X body that is already
posed by R, with 8 (up to the wrist and neck, excluding
them), we need to express them relative to their parent in
the kinematic skeleton:

erelalive = F(ega 0b)7 (1)
where I is the chain transformation function according to
SMPL-X’s kinematic skeleton hierarchy.

2. Evaluation
2.1. Body-face correlations discussion

PIXIE gives more realistic body shapes, not only due to
its gendered shape loss, but also thanks to the shared body,
hand and face shape space of SMPL-X. This allows PIXIE’s



Figure 1: Whole-body shape estimation from only our face
expert, using SMPL-Xs joint shape space for all body parts.

face expert to — uniquely — contribute to whole-body shape.
To verify this, we apply our face expert on face-only images
and get the whole-body shapes of Fig. 1. These are not only
correctly “gendered”, but also have a plausible BMI. For the
sumo wrestler in Fig. 1, PIXIE predicts a body with higher
BMI (26.9) than the mean shape (26.1). PIXIE is the only
3D whole-body estimation method that explores such face-
body shape correlations explicitly. We believe that this is
a useful insight and points the community towards a new
direction.

2.2. Qualitative Evaluation

Comparison with MTC: In Fig. 2 we compare PIXIE with
MTC [6]. PIXIE is two orders of magnitude faster and pre-
dicts more accurate 3D body shapes. However, when 2D
joint estimations are accurate, optimization-based methods,
such as MTC [6] and SMPLIify-X [4], tend to estimate bod-
ies that are better aligned with the image.

Expressive body reconstruction: We compare our
method, PIXIE, with other state-of-the-art expressive body
reconstruction methods in Fig. 3. PIXIE is more robust
to challenging ambiguities (blur, occlusion) than existing
whole-body regressors [I, 5], since its moderators fuses
“global” body and “local” part.

Qualitative results: Finally, in Fig. 4, 5 and 6 we provide
more standalone PIXIE results. Overall, PIXIE produces
visually plausible body shapes with detailed facial expres-
sions.

Failure cases: Although the gender prior loss and the
shared whole-body shape space result in better 3D shape
predictions, they are not sufficient for perfectly estimating
full-body 3D shape. Furthermore, the employed photomet-
ric term often causes the model to prefer to explain image
evidence using lighting, rather than albedo, which leads to
incorrect skin tone predictions. These points highlight im-
portant directions for improving PIXIE. Representative fail-
ure cases can be seen in Fig. 7.



Figure 2: Qualitative PIXIE results and comparison to MTC [6]. From left to right: (1) RGB image, (2) MTC [6], (3) PIXIE,
(4) PIXIE with facial geometric details, (5) PIXIE with estimated face albedo and lighting. Overall, PIXIE produces more
visually plausible body shapes and more detailed facial expressions.



Figure 3: Qualitative PIXIE results and comparison to ExPose [ 1] and FrankMocap [5]. From left to right: (1) RGB images
from video, (2) FrankMocap [5], (3) ExPose [1], (4) PIXIE 3D body predictions with color-coded part-expert confidence.
Moderator predicts the confidence of body/face/hand experts, reder means higher confidence in the body expert rather than
the results from face/hand experts. Thanks to the moderators, PIXIE is more robust to low quality part images. For example,
when the hand is blurry, PIXIE still predicts a plausible wrist pose, instead of an unnatural twist.


https://github.com/facebookresearch/frankmocap

Figure 4: Qualitative PIXIE results. From left to right: (1) RGB image, (2) PIXIE, (3) PIXIE with facial geometric details,
(4) PIXIE with estimated face albedo and lighting.
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Figure 6: Qualitative PIXIE results. From left to right: (1) RGB image, (2) PIXIE, (3) PIXIE with facial geometric details,
(4) PIXIE with estimated face albedo and lighting.



Figure 7: Failure cases for PIXIE. In these examples, the implicit reasoning about gender and the face shape information are
not enough to correctly infer the body shape. Furthermore, due to the formulation of the photometric term the model prefers
to explain image evidence using lighting, rather than albedo, which leads to wrong skin tone predictions. Finally, replacing
the weak-perspective camera with a perspective model would make the model more robust to extreme viewing angles and
perspective distortion effects. Future work should look into denser forms of supervision, formulating a better photometric
term and integrating a perspective camera to resolve these issues.
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